Spaces:
Running
Running
| from dataclasses import dataclass, make_dataclass | |
| import pandas as pd | |
| def fields(raw_class): | |
| return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
| # These classes are for user facing column names, | |
| # to avoid having to change them all around the code | |
| # when a modif is needed | |
| class ColumnContent: | |
| name: str | |
| type: str | |
| displayed_by_default: bool | |
| hidden: bool = False | |
| never_hidden: bool = False | |
| ## Leaderboard columns | |
| auto_eval_column_dict = [] | |
| # Init | |
| auto_eval_column_dict.append( | |
| ["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)] | |
| ) | |
| auto_eval_column_dict.append(["model_provider", ColumnContent, ColumnContent("LLM Provider", "markdown", True)]) | |
| auto_eval_column_dict.append( | |
| ["use_case_name", ColumnContent, ColumnContent("Use Case Name", "markdown", True, never_hidden=True)] | |
| ) | |
| auto_eval_column_dict.append(["use_case_type", ColumnContent, ColumnContent("Use Case Type", "markdown", False)]) | |
| auto_eval_column_dict.append( | |
| ["accuracy_method", ColumnContent, ColumnContent("Accuracy Method", "markdown", False, never_hidden=True)] | |
| ) | |
| # Accuracy metrics | |
| auto_eval_column_dict.append(["accuracy_metric_average", ColumnContent, ColumnContent("Accuracy", "markdown", True)]) | |
| auto_eval_column_dict.append( | |
| [ | |
| "accuracy_metric_instruction_following", | |
| ColumnContent, | |
| ColumnContent("Instruction Following", "markdown", True), | |
| ] | |
| ) | |
| auto_eval_column_dict.append( | |
| ["accuracy_metric_completeness", ColumnContent, ColumnContent("Completeness", "markdown", True)] | |
| ) | |
| auto_eval_column_dict.append( | |
| ["accuracy_metric_conciseness", ColumnContent, ColumnContent("Conciseness", "markdown", True)] | |
| ) | |
| auto_eval_column_dict.append( | |
| ["accuracy_metric_factuality", ColumnContent, ColumnContent("Factuality", "markdown", True)] | |
| ) | |
| # Speed (Latency) & Cost metrics | |
| auto_eval_column_dict.append(["latency", ColumnContent, ColumnContent("Response Time (Sec)", "markdown", True)]) | |
| auto_eval_column_dict.append( | |
| ["mean_output_tokens", ColumnContent, ColumnContent("Mean Output Tokens", "markdown", True)] | |
| ) | |
| auto_eval_column_dict.append(["cost_band", ColumnContent, ColumnContent("Cost Band", "markdown", True)]) | |
| # Trust & Safety metrics | |
| auto_eval_column_dict.append(["ts", ColumnContent, ColumnContent("Trust & Safety", "markdown", True)]) | |
| auto_eval_column_dict.append(["safety", ColumnContent, ColumnContent("Safety", "markdown", False)]) | |
| auto_eval_column_dict.append(["privacy", ColumnContent, ColumnContent("Privacy", "markdown", False)]) | |
| auto_eval_column_dict.append(["truthfulness", ColumnContent, ColumnContent("Truthfulness", "markdown", False)]) | |
| auto_eval_column_dict.append(["crm_fairness", ColumnContent, ColumnContent("CRM Fairness", "markdown", False)]) | |
| # We use make dataclass to dynamically fill the scores from Tasks | |
| AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
| # Speed (Latency) & Cost metrics | |
| cost_eval_column_dict = [] | |
| # Init | |
| cost_eval_column_dict.append( | |
| ["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)] | |
| ) | |
| cost_eval_column_dict.append(["model_provider", ColumnContent, ColumnContent("LLM Provider", "markdown", True)]) | |
| cost_eval_column_dict.append( | |
| ["use_case_flavor", ColumnContent, ColumnContent("Cost and Speed: Flavor", "markdown", True)] | |
| ) | |
| cost_eval_column_dict.append(["latency", ColumnContent, ColumnContent("Response Time (Sec)", "markdown", True)]) | |
| cost_eval_column_dict.append( | |
| ["mean_output_tokens", ColumnContent, ColumnContent("Mean Output Tokens", "markdown", True)] | |
| ) | |
| cost_eval_column_dict.append(["cost_band", ColumnContent, ColumnContent("Cost Band", "markdown", True)]) | |
| CostEvalColumn = make_dataclass("CostEvalColumn", cost_eval_column_dict, frozen=True) | |
| # Trust & Safety metrics | |
| ts_eval_column_dict = [] | |
| # Init | |
| ts_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)]) | |
| # ts_eval_column_dict.append(["model_provider", ColumnContent, ColumnContent("LLM Provider", "markdown", True)]) | |
| ts_eval_column_dict.append(["ts", ColumnContent, ColumnContent("Trust & Safety", "markdown", True)]) | |
| ts_eval_column_dict.append(["safety", ColumnContent, ColumnContent("Safety", "markdown", False)]) | |
| ts_eval_column_dict.append(["privacy", ColumnContent, ColumnContent("Privacy", "markdown", False)]) | |
| ts_eval_column_dict.append(["truthfulness", ColumnContent, ColumnContent("Truthfulness", "markdown", False)]) | |
| ts_eval_column_dict.append(["crm_fairness", ColumnContent, ColumnContent("CRM Fairness", "markdown", False)]) | |
| # ts_eval_column_dict.append(["bias_no_ci", ColumnContent, ColumnContent("Bias No CI", "markdown", True)]) | |
| TSEvalColumn = make_dataclass("TSEvalColumn", ts_eval_column_dict, frozen=True) | |
| # Column selection | |
| COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] | |
| TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] | |
| COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] | |
| TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] | |
| COST_COLS = [c.name for c in fields(CostEvalColumn) if not c.hidden] | |
| COST_TYPES = [c.type for c in fields(CostEvalColumn) if not c.hidden] | |
| TS_COLS = [c.name for c in fields(TSEvalColumn) if not c.hidden] | |
| TS_TYPES = [c.type for c in fields(TSEvalColumn) if not c.hidden] | |
| # BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |
| NUMERIC_INTERVALS = { | |
| "?": pd.Interval(-1, 0, closed="right"), | |
| "~1.5": pd.Interval(0, 2, closed="right"), | |
| "~3": pd.Interval(2, 4, closed="right"), | |
| "~7": pd.Interval(4, 9, closed="right"), | |
| "~13": pd.Interval(9, 20, closed="right"), | |
| "~35": pd.Interval(20, 45, closed="right"), | |
| "~60": pd.Interval(45, 70, closed="right"), | |
| "70+": pd.Interval(70, 10000, closed="right"), | |
| } | |