#!/usr/bin/env python3
import sys
import torch
import logging
import speechbrain as sb
import torchaudio
from hyperpyyaml import load_hyperpyyaml
from speechbrain.tokenizers.SentencePiece import SentencePiece
from speechbrain.utils.data_utils import undo_padding
from speechbrain.utils.distributed import run_on_main

"""Recipe for training a sequence-to-sequence ASR system with CommonVoice.
The system employs a wav2vec2 encoder and a CTC decoder.
Decoding is performed with greedy decoding (will be extended to beam search).

To run this recipe, do the following:
> python train_with_wav2vec2.py hparams/train_with_wav2vec2.yaml

With the default hyperparameters, the system employs a pretrained wav2vec2 encoder.
The wav2vec2 model is pretrained following the model given in the hprams file.
It may be dependent on the language.

The neural network is trained with CTC on sub-word units estimated with
Byte Pairwise Encoding (BPE).

The experiment file is flexible enough to support a large variety of
different systems. By properly changing the parameter files, you can try
different encoders, decoders, tokens (e.g, characters instead of BPE),
training languages (all CommonVoice languages), and many
other possible variations.

Authors
 * Titouan Parcollet 2021
"""

logger = logging.getLogger(__name__)


# Define training procedure
class ASRCV(sb.core.Brain):
    def compute_forward(self, batch, stage):
        """Forward computations from the waveform batches to the output probabilities."""

        batch = batch.to(self.device)
        wavs, wav_lens = batch.sig
        tokens_bos, _ = batch.tokens_bos
        wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)

        if stage == sb.Stage.TRAIN:
            if hasattr(self.hparams, "augmentation"):
                wavs = self.hparams.augmentation(wavs, wav_lens)

        # Forward pass
        feats = self.modules.wav2vec2(wavs, wav_lens)
        x = self.modules.enc(feats)
        logits = self.modules.ctc_lin(x)
        p_ctc = self.hparams.log_softmax(logits)

        return p_ctc, wav_lens

    def compute_objectives(self, predictions, batch, stage):
        """Computes the loss (CTC) given predictions and targets."""

        p_ctc, wav_lens = predictions

        ids = batch.id
        tokens_eos, tokens_eos_lens = batch.tokens_eos
        tokens, tokens_lens = batch.tokens

        loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)

        if stage != sb.Stage.TRAIN:
            # Decode token terms to words
            sequence = sb.decoders.ctc_greedy_decode(
                p_ctc, wav_lens, blank_id=self.hparams.blank_index
            )

            predicted_words = self.tokenizer(sequence, task="decode_from_list")

            # Convert indices to words
            target_words = undo_padding(tokens, tokens_lens)
            target_words = self.tokenizer(target_words, task="decode_from_list")

            self.wer_metric.append(ids, predicted_words, target_words)
            self.cer_metric.append(ids, predicted_words, target_words)

        return loss

    def fit_batch(self, batch):
        """Train the parameters given a single batch in input"""
        should_step = self.step % self.grad_accumulation_factor == 0
        # Managing automatic mixed precision
        # TOFIX: CTC fine-tuning currently is unstable
        # This is certainly due to CTC being done in fp16 instead of fp32
        if self.auto_mix_prec:
            with torch.cuda.amp.autocast():
                with self.no_sync():
                    outputs = self.compute_forward(batch, sb.Stage.TRAIN)
                loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
            with self.no_sync(not should_step):
                self.scaler.scale(
                    loss / self.grad_accumulation_factor
                ).backward()
            if should_step:

                if not self.hparams.wav2vec2.freeze:
                    self.scaler.unscale_(self.wav2vec_optimizer)
                self.scaler.unscale_(self.model_optimizer)
                if self.check_gradients(loss):
                    if not self.hparams.wav2vec2.freeze:
                        if self.optimizer_step >= self.hparams.warmup_steps:
                            self.scaler.step(self.wav2vec_optimizer)
                    self.scaler.step(self.model_optimizer)
                self.scaler.update()
                self.zero_grad()
                self.optimizer_step += 1
        else:
            # This is mandatory because HF models have a weird behavior with DDP
            # on the forward pass
            with self.no_sync():
                outputs = self.compute_forward(batch, sb.Stage.TRAIN)

            loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)

            with self.no_sync(not should_step):
                (loss / self.grad_accumulation_factor).backward()
            if should_step:
                if self.check_gradients(loss):
                    if not self.hparams.wav2vec2.freeze:
                        if self.optimizer_step >= self.hparams.warmup_steps:
                            self.wav2vec_optimizer.step()
                    self.model_optimizer.step()
                self.zero_grad()
                self.optimizer_step += 1

        self.on_fit_batch_end(batch, outputs, loss, should_step)
        return loss.detach().cpu()

    def evaluate_batch(self, batch, stage):
        """Computations needed for validation/test batches"""
        predictions = self.compute_forward(batch, stage=stage)
        with torch.no_grad():
            loss = self.compute_objectives(predictions, batch, stage=stage)
        return loss.detach()

    def on_stage_start(self, stage, epoch):
        """Gets called at the beginning of each epoch"""
        if stage != sb.Stage.TRAIN:
            self.cer_metric = self.hparams.cer_computer()
            self.wer_metric = self.hparams.error_rate_computer()

    def on_stage_end(self, stage, stage_loss, epoch):
        """Gets called at the end of an epoch."""
        # Compute/store important stats
        stage_stats = {"loss": stage_loss}
        if stage == sb.Stage.TRAIN:
            self.train_stats = stage_stats
        else:
            stage_stats["CER"] = self.cer_metric.summarize("error_rate")
            stage_stats["WER"] = self.wer_metric.summarize("error_rate")

        # Perform end-of-iteration things, like annealing, logging, etc.
        if stage == sb.Stage.VALID:
            old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
                stage_stats["loss"]
            )
            old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
                stage_stats["loss"]
            )
            sb.nnet.schedulers.update_learning_rate(
                self.model_optimizer, new_lr_model
            )
            if not self.hparams.wav2vec2.freeze:
                sb.nnet.schedulers.update_learning_rate(
                    self.wav2vec_optimizer, new_lr_wav2vec
                )
            self.hparams.train_logger.log_stats(
                stats_meta={
                    "epoch": epoch,
                    "lr_model": old_lr_model,
                    "lr_wav2vec": old_lr_wav2vec,
                },
                train_stats=self.train_stats,
                valid_stats=stage_stats,
            )
            self.checkpointer.save_and_keep_only(
                meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
            )
        elif stage == sb.Stage.TEST:
            self.hparams.train_logger.log_stats(
                stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
                test_stats=stage_stats,
            )
            with open(self.hparams.wer_file, "w") as w:
                self.wer_metric.write_stats(w)

    def init_optimizers(self):
        "Initializes the wav2vec2 optimizer and model optimizer"

        # If the wav2vec encoder is unfrozen, we create the optimizer
        if not self.hparams.wav2vec2.freeze:
            self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
                self.modules.wav2vec2.parameters()
            )
            if self.checkpointer is not None:
                self.checkpointer.add_recoverable(
                    "wav2vec_opt", self.wav2vec_optimizer
                )

        self.model_optimizer = self.hparams.model_opt_class(
            self.hparams.model.parameters()
        )

        if self.checkpointer is not None:
            self.checkpointer.add_recoverable("modelopt", self.model_optimizer)

    def zero_grad(self, set_to_none=False):
        if not self.hparams.wav2vec2.freeze:
            self.wav2vec_optimizer.zero_grad(set_to_none)
        self.model_optimizer.zero_grad(set_to_none)


# Define custom data procedure
def dataio_prepare(hparams, tokenizer):
    """This function prepares the datasets to be used in the brain class.
    It also defines the data processing pipeline through user-defined functions."""

    # 1. Define datasets
    data_folder = hparams["data_folder"]

    train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
        csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
    )

    if hparams["sorting"] == "ascending":
        # we sort training data to speed up training and get better results.
        train_data = train_data.filtered_sorted(
            sort_key="duration",
            key_max_value={"duration": hparams["avoid_if_longer_than"]},
        )
        # when sorting do not shuffle in dataloader ! otherwise is pointless
        hparams["dataloader_options"]["shuffle"] = False

    elif hparams["sorting"] == "descending":
        train_data = train_data.filtered_sorted(
            sort_key="duration",
            reverse=True,
            key_max_value={"duration": hparams["avoid_if_longer_than"]},
        )
        # when sorting do not shuffle in dataloader ! otherwise is pointless
        hparams["dataloader_options"]["shuffle"] = False

    elif hparams["sorting"] == "random":
        pass

    else:
        raise NotImplementedError(
            "sorting must be random, ascending or descending"
        )

    valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
        csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
    )
    # We also sort the validation data so it is faster to validate
    valid_data = valid_data.filtered_sorted(sort_key="duration")

    test_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
        csv_path=hparams["test_csv"], replacements={"data_root": data_folder},
    )

    # We also sort the validation data so it is faster to validate
    test_data = test_data.filtered_sorted(sort_key="duration")

    datasets = [train_data, valid_data, test_data]

    # 2. Define audio pipeline:
    @sb.utils.data_pipeline.takes("wav")
    @sb.utils.data_pipeline.provides("sig")
    def audio_pipeline(wav):
        info = torchaudio.info(wav)
        sig = sb.dataio.dataio.read_audio(wav)
        resampled = torchaudio.transforms.Resample(
            info.sample_rate, hparams["sample_rate"],
        )(sig)
        return resampled

    sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)

    # 3. Define text pipeline:
    @sb.utils.data_pipeline.takes("wrd")
    @sb.utils.data_pipeline.provides(
        "tokens_list", "tokens_bos", "tokens_eos", "tokens"
    )
    def text_pipeline(wrd):
        tokens_list = tokenizer.sp.encode_as_ids(wrd)
        yield tokens_list
        tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list))
        yield tokens_bos
        tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]])
        yield tokens_eos
        tokens = torch.LongTensor(tokens_list)
        yield tokens

    sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)

    # 4. Set output:
    sb.dataio.dataset.set_output_keys(
        datasets, ["id", "sig", "tokens_bos", "tokens_eos", "tokens"],
    )
    return train_data, valid_data, test_data


if __name__ == "__main__":

    # Load hyperparameters file with command-line overrides
    hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
    with open(hparams_file) as fin:
        hparams = load_hyperpyyaml(fin, overrides)

    # If --distributed_launch then
    # create ddp_group with the right communication protocol
    sb.utils.distributed.ddp_init_group(run_opts)

    # Dataset preparation (parsing CommonVoice)
    from common_voice_prepare import prepare_common_voice  # noqa

    # Create experiment directory
    sb.create_experiment_directory(
        experiment_directory=hparams["output_folder"],
        hyperparams_to_save=hparams_file,
        overrides=overrides,
    )

    # Due to DDP, we do the preparation ONLY on the main python process
    run_on_main(
        prepare_common_voice,
        kwargs={
            "data_folder": hparams["data_folder"],
            "save_folder": hparams["save_folder"],
            "train_tsv_file": hparams["train_tsv_file"],
            "dev_tsv_file": hparams["dev_tsv_file"],
            "test_tsv_file": hparams["test_tsv_file"],
            "accented_letters": hparams["accented_letters"],
            "language": hparams["language"],
            "skip_prep": hparams["skip_prep"],
        },
    )

    # Defining tokenizer and loading it
    tokenizer = SentencePiece(
        model_dir=hparams["save_folder"],
        vocab_size=hparams["output_neurons"],
        annotation_train=hparams["train_csv"],
        annotation_read="wrd",
        model_type=hparams["token_type"],
        character_coverage=hparams["character_coverage"],
    )

    # Create the datasets objects as well as tokenization and encoding :-D
    train_data, valid_data, test_data = dataio_prepare(hparams, tokenizer)

    # Trainer initialization
    asr_brain = ASRCV(
        modules=hparams["modules"],
        hparams=hparams,
        run_opts=run_opts,
        checkpointer=hparams["checkpointer"],
    )

    # Adding objects to trainer.
    asr_brain.tokenizer = tokenizer

    # Training
    asr_brain.fit(
        asr_brain.hparams.epoch_counter,
        train_data,
        valid_data,
        train_loader_kwargs=hparams["dataloader_options"],
        valid_loader_kwargs=hparams["test_dataloader_options"],
    )

    # Test
    asr_brain.hparams.wer_file = hparams["output_folder"] + "/wer_test.txt"
    asr_brain.evaluate(
        test_data,
        min_key="WER",
        test_loader_kwargs=hparams["test_dataloader_options"],
    )