File size: 3,843 Bytes
0fdcdc4
 
d081411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Generated 2023-09-25 from:
# /home/salah/Code-Switched-Tunisian-SpeechToText/cs.yaml
# yamllint disable
# Generated 2023-08-03 from:
# /home/salah/new_tunisian_model/hparams/train_tunisian_withwavlm.yaml
# yamllint disable
# ################################
# Model: wav2vec2 + DNN + CTC
# Augmentation: SpecAugment
# Authors: Titouan Parcollet 2021
# ################################

seed: 1994
__set_seed: !!python/object/apply:torch.manual_seed [1234]
output_folder: results/non_semi_final_stac
wer_file: results/non_semi_final_stac/wer.txt
save_folder: results/non_semi_final_stac/save
train_log: results/non_semi_final_stac/train_log.txt



# Data files
data_folder: junk  # e.g, /localscratch/cv-corpus-5.1-2020-06-22/fr
train_tsv_file: junk/train.tsv                # Standard CommonVoice .tsv files
dev_tsv_file: junk/dev.tsv                # Standard CommonVoice .tsv files
test_tsv_file: junk/test.tsv                # Standard CommonVoice .tsv files
accented_letters: true

csv_folder: /gpfsscratch/rech/nou/uzn19yk/switched_data/extended_clean/
train_csv: /gpfsscratch/rech/nou/uzn19yk/switched_data/extended_clean//train.csv
valid_csv: /gpfsscratch/rech/nou/uzn19yk/switched_data/extended_clean//dev.csv
test_csv:
- all_tests/cs_test.csv
- all_tests/stac_test.csv

# We remove utterance slonger than 10s in the train/dev/test sets as
# longer sentences certainly correspond to "open microphones".
avoid_if_longer_than: 13.0
avoid_if_shorter_than: 0.5

# Training parameters
number_of_epochs: 20
lr: 0.0002
lr_weights: 0.01
sorting: ascending
auto_mix_prec: false
sample_rate: 16000
language_modelling: true
ngram_lm_path: arpas/pluslanguages_everything.arpa

# With data_parallel batch_size is split into N jobs
# With DDP batch_size is multiplied by N jobs
# Must be 3 per GPU to fit 32GB of VRAM
batch_size: 3
test_batch_size: 4

# Dataloader options
dataloader_options:
  batch_size: 3
  num_workers: 6

test_dataloader_options:
  batch_size: 4
  num_workers: 6

# Model parameters
activation: !name:torch.nn.Sigmoid
dnn_layers: 1
dnn_neurons: 768
freeze_encoder: true

# Outputs
output_neurons: 76  # BPE size, index(blank/eos/bos) = 0

# Functions and classes
#
epoch_counter: &id006 !new:speechbrain.utils.epoch_loop.EpochCounter
  limit: 20

encoder_dim: 3217
enc: &id001 !new:speechbrain.nnet.RNN.LSTM
  input_shape: [null, null, 3217]
  num_layers: 2
  bidirectional: true
  dropout: 0.2
  hidden_size: 1024

ctc_lin: &id002 !new:speechbrain.nnet.linear.Linear

  input_size: 2048
  n_neurons: 76

log_softmax: !new:speechbrain.nnet.activations.Softmax
  apply_log: true

ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
  blank_index: 0

modules:
  enc: *id001
  ctc_lin: *id002
model: &id003 !new:torch.nn.ModuleList
- [*id001, *id002]
model_opt_class: !name:torch.optim.Adam
  lr: 0.0002

weights_opt_class: !name:torch.optim.Adam
  lr: 0.01

lr_annealing_model: &id004 !new:speechbrain.nnet.schedulers.NewBobScheduler
  initial_value: 0.0002
  improvement_threshold: 0.0025
  annealing_factor: 0.8
  patient: 0

lr_annealing_weights: &id005 !new:speechbrain.nnet.schedulers.NewBobScheduler
  initial_value: 0.01
  improvement_threshold: 0.0025
  annealing_factor: 0.9
  patient: 0

label_encoder: &id007 !new:speechbrain.dataio.encoder.CTCTextEncoder


checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
  checkpoints_dir: results/non_semi_final_stac/save
  recoverables:
    model: *id003
    scheduler_model: *id004
    scheduler_encoder: *id005
    counter: *id006
    tokenizer: *id007
blank_index: 0
unk_index: 1


train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
  save_file: results/non_semi_final_stac/train_log.txt

error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats

cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
  split_tokens: true