Spaces:
Sleeping
Sleeping
File size: 4,401 Bytes
7bd7bef 5b2d4e7 7bd7bef 5b2d4e7 7bd7bef 5b2d4e7 7bd7bef 5b2d4e7 7bd7bef 5b2d4e7 7bd7bef 5b2d4e7 7bd7bef 5b2d4e7 7bd7bef 5b2d4e7 7bd7bef 5b2d4e7 7bd7bef 5b2d4e7 7bd7bef 5b2d4e7 7bd7bef 5b2d4e7 7bd7bef 5b2d4e7 7bd7bef 5b2d4e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import streamlit as st
import psycopg2
import os
import plotly.graph_objects as go
import pandas as pd
from dotenv import load_dotenv
from server.db.db import (
get_recipes_count,
get_average_latency,
get_daily_requests,
get_total_cost,
get_total_impact,
)
# Récupérer les données pour afficher sur le dashboard
total_recipes = get_recipes_count()
average_latency = get_average_latency()
total_cost = get_total_cost()
total_impact = get_total_impact()
# Récupérer les données des requêtes par jour
df_requests = get_daily_requests()
# Affichage de la page dashboard avec Streamlit
st.markdown(
"""
<div class="title-container">
DASHBOARD
</div>
""",
unsafe_allow_html=True,
)
# Ajouter le CSS pour les cards avec animations et un design moderne
st.markdown(
"""
<style>
.title-container {
background-color: #6A5ACD;
border-radius: 10px;
color: white;
text-align: center;
padding: 5px;
margin-bottom: 20px;
box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1);
font-family: New Icon;
font-size: 30px;
}
/* Style pour les cards */
.card {
border-radius: 15px;
padding: 20px;
background: linear-gradient(to top, #cae7d4, #a7d7b8);
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.1);
margin-bottom: 20px;
text-align: center;
transition: transform 0.3s, box-shadow 0.3s;
animation: fadeInUp 0.5s ease-out;
height: 200px;
}
.card:hover {
transform: translateY(-10px);
box-shadow: 0 12px 24px rgba(0, 0, 0, 0.2);
}
@keyframes fadeInUp {
0% {
transform: translateY(20px);
opacity: 0;
}
100% {
transform: translateY(0);
opacity: 1;
}
}
.card-title {
font-size: 1.3em;
color: #2d3e50;
margin-bottom: 15px;
font-weight: bold;
font-family: New Icon;
}
.card-value {
font-size: 30px;
color: #0099cc;
font-weight: bold;
}
/* Add smooth transition for the hover effect */
.card .card-title, .card .card-value {
transition: color 0.3s ease;
}
.card:hover {
color: #FF9A76;
}
.card:hover .card-value {
color: #0086b3;
}
</style>
""",
unsafe_allow_html=True,
)
# Créer des colonnes pour disposer les cards
col1, col2, col3, col4 = st.columns(4)
# Card 1
with col1:
st.markdown(
f"""
<div class="card">
<div class="card-title">🍲 Nombre de recettes suggerées</div>
<div class="card-value">{total_recipes}</div>
</div>
""",
unsafe_allow_html=True,
)
# Card 2
with col2:
st.markdown(
f"""
<div class="card">
<div class="card-title">⏱️ Latence moyenne</div>
<div class="card-value">{average_latency}s</div>
</div>
""",
unsafe_allow_html=True,
)
# Card 3
with col3:
st.markdown(
f"""
<div class="card">
<div class="card-title">💸 Coût total des requêtes</div>
<div class="card-value">${total_cost}</div>
</div>
""",
unsafe_allow_html=True,
)
# Card 4
with col4:
st.markdown(
f"""
<div class="card">
<div class="card-title">🌱 Impact écologique estimé</div>
<div class="card-value">{total_impact} kg CO2</div>
</div>
""",
unsafe_allow_html=True,
)
# Graphique des requêtes par jour
st.markdown("### 📅 Nombre de requêtes par jour")
fig = go.Figure(
data=[
go.Scatter(
x=df_requests["date"],
y=df_requests["nombre_requetes"],
mode="lines+markers",
)
]
)
fig.update_layout(
xaxis_title="Date", yaxis_title="Nombre de requêtes", template="plotly_dark"
)
st.plotly_chart(fig)
|