import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel, PeftConfig # Load the PEFT configuration, base model, and tokenizer config = PeftConfig.from_pretrained("SahilCarterr/Llama-2-7B-Chat-PEFT") base_model = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7b-Chat-GPTQ", device_map='auto') model = PeftModel.from_pretrained(base_model, "SahilCarterr/Llama-2-7B-Chat-PEFT") tokenizer = AutoTokenizer.from_pretrained("SahilCarterr/Llama-2-7B-Chat-PEFT") def respond(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Encode the input inputs = tokenizer(message, return_tensors="pt").input_ids.to('cuda') # Generate the response using the model outputs = model.generate(inputs, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_p=top_p) response = tokenizer.decode(outputs[0], skip_special_tokens=True) yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()