method: 'diffsketcher' image_size: 224 # canvas size path_svg: ~ # if you want to load a svg file and train from it mask_object: False # if the target image contains background, it's better to mask it out fix_scale: False # if the target image is not squared, it is recommended to fix the scale # train num_iter: 2000 num_stages: 1 # training stages, you can train x strokes, then freeze them and train another x strokes etc lr_schedule: False lr_decay_rate: 0.1 decay_steps: [ 1000, 1500 ] lr: 1 color_lr: 0.01 color_vars_threshold: 0.0 # uncomment the code width_lr: 0.1 max_width: 50 # stroke width # stroke attrs num_paths: 128 # number of strokes width: 1.5 # stroke width control_points_per_seg: 4 num_segments: 1 optim_opacity: True # if True, the stroke opacity is optimized optim_width: False # if True, the stroke width is optimized optim_rgba: False # if True, the stroke RGBA is optimized opacity_delta: 0 # stroke pruning # init strokes attention_init: True # if True, use the attention heads of Dino model to set the location of the initial strokes xdog_intersec: True # initialize along the edge, mix XDoG and attn up softmax_temp: 0.5 cross_attn_res: 16 self_attn_res: 32 max_com: 20 mean_comp: False comp_idx: 0 attn_coeff: 1.0 # attn fusion, w * cross-attn + (1-w) * self-attn log_cross_attn: False # True if cross attn every step u2net_path: "./checkpoint/u2net/u2net.pth" # ldm model_id: "sd15" ldm_speed_up: False enable_xformers: True gradient_checkpoint: False token_ind: 5 use_ddim: True num_inference_steps: 100 guidance_scale: 7.5 # sdxl default 5.0 # ASDS loss sds: crop_size: 512 augmentations: "affine" guidance_scale: 100 grad_scale: 1e-6 t_range: [ 0.05, 0.95 ] warmup: 2000 clip: model_name: "RN101" # RN101, ViT-L/14 feats_loss_type: "l2" # clip visual loss type, conv layers feats_loss_weights: [ 0,0,1.0,1.0,0 ] # RN based # feats_loss_weights: [ 0,0,1.0,1.0,0,0,0,0,0,0,0,0 ] # ViT based fc_loss_weight: 0.1 # clip visual loss, fc layer weight augmentations: "affine" # augmentation before clip visual computation num_aug: 4 # num of augmentation before clip visual computation vis_loss: 1 # 1 or 0 for use or disable clip visual loss text_visual_coeff: 0 # cosine similarity between text and img perceptual: name: "lpips" # dists lpips_net: 'vgg' coeff: 0.2