method: 'clipasso' image_size: 224 mask_object: False fix_scale: False path_svg: ~ # if you want to load a svg file and train from it # train num_iter: 2001 num_stages: 1 # training stages, you can train x strokes, then freeze them and train another x strokes etc lr_schedule: False lr: 1 color_lr: 0.01 color_vars_threshold: 0.0 # SVG path attr num_paths: 24 # number of strokes width: 1.5 # stroke width control_points_per_seg: 4 num_segments: 1 attention_init: 1 # if True, use the attention heads of Dino model to set the location of the initial strokes saliency_model: "clip" saliency_clip_model: "ViT-B/32" xdog_intersec: 1 mask_object_attention: 0 softmax_temp: 0.3 u2net_path: "./checkpoint/u2net/u2net.pth" # loss percep_loss: "none" perceptual_weight: 0 train_with_clip: 0 clip_weight: 0 start_clip: 0 num_aug_clip: 4 include_target_in_aug: 0 augment_both: 0 augemntations: "affine" # can be any combination of: 'affine_noise_eraserchunks_eraser_press' noise_thresh: 0.5 aug_scale_min: 0.7 force_sparse: 0 # if True, use L1 regularization on stroke's opacity to encourage small number of strokes clip_conv_loss: 1 clip_conv_loss_type: "L2" clip_conv_layer_weights: "0,0,1.0,1.0,0" clip_model_name: "RN101" clip_fc_loss_weight: 0.1 clip_text_guide: 0 text_target: None