hjc-owo
init repo
966ae59
# -*- coding: utf-8 -*-
import pathlib
from typing import Union, Optional, List, Tuple, Dict, Text, BinaryIO
from PIL import Image
import torch
import cv2
import numpy as np
import matplotlib.pyplot as plt
from .seq_aligner import get_word_inds
def text_under_image(image: np.ndarray,
text: str,
text_color: Tuple[int, int, int] = (0, 0, 0)) -> np.ndarray:
h, w, c = image.shape
offset = int(h * .2)
img = np.ones((h + offset, w, c), dtype=np.uint8) * 255
font = cv2.FONT_HERSHEY_SIMPLEX
img[:h] = image
textsize = cv2.getTextSize(text, font, 1, 2)[0]
text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2
cv2.putText(img, text, (text_x, text_y), font, 1, text_color, 2)
return img
def view_images(
images: Union[np.ndarray, List[np.ndarray]],
num_rows: int = 1,
offset_ratio: float = 0.02,
save_image: bool = False,
fp: Union[Text, pathlib.Path, BinaryIO] = None,
) -> np.ndarray:
if save_image:
assert fp is not None
if isinstance(images, list):
images = np.concatenate(images, axis=0)
if isinstance(images, np.ndarray) and images.ndim == 4:
num_empty = images.shape[0] % num_rows
else:
images = [images] if not isinstance(images, list) else images
num_empty = len(images) % num_rows
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
num_items = len(images)
# Calculate the composite image
h, w, c = images[0].shape
offset = int(h * offset_ratio)
num_cols = int(np.ceil(num_items / num_rows)) # count the number of columns
image_h = h * num_rows + offset * (num_rows - 1)
image_w = w * num_cols + offset * (num_cols - 1)
assert image_h > 0, "Invalid image height: {} (num_rows={}, offset_ratio={}, num_items={})".format(
image_h, num_rows, offset_ratio, num_items)
assert image_w > 0, "Invalid image width: {} (num_cols={}, offset_ratio={}, num_items={})".format(
image_w, num_cols, offset_ratio, num_items)
image_ = np.ones((image_h, image_w, 3), dtype=np.uint8) * 255
# Ensure that the last row is filled with empty images if necessary
if len(images) % num_cols > 0:
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
num_empty = num_cols - len(images) % num_cols
images += [empty_images] * num_empty
for i in range(num_rows):
for j in range(num_cols):
k = i * num_cols + j
if k >= num_items:
break
image_[i * (h + offset): i * (h + offset) + h, j * (w + offset): j * (w + offset) + w] = images[k]
pil_img = Image.fromarray(image_)
if save_image:
pil_img.save(fp)
return pil_img
def update_alpha_time_word(alpha,
bounds: Union[float, Tuple[float, float]],
prompt_ind: int,
word_inds: Optional[torch.Tensor] = None):
if isinstance(bounds, float):
bounds = 0, bounds
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
if word_inds is None:
word_inds = torch.arange(alpha.shape[2])
alpha[: start, prompt_ind, word_inds] = 0
alpha[start: end, prompt_ind, word_inds] = 1
alpha[end:, prompt_ind, word_inds] = 0
return alpha
def get_time_words_attention_alpha(prompts, num_steps,
cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]],
tokenizer,
max_num_words=77):
if type(cross_replace_steps) is not dict:
cross_replace_steps = {"default_": cross_replace_steps}
if "default_" not in cross_replace_steps:
cross_replace_steps["default_"] = (0., 1.)
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
for i in range(len(prompts) - 1):
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"],
i)
for key, item in cross_replace_steps.items():
if key != "default_":
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
for i, ind in enumerate(inds):
if len(ind) > 0:
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words)
return alpha_time_words