Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
import pathlib | |
from typing import Union, Optional, List, Tuple, Dict, Text, BinaryIO | |
from PIL import Image | |
import torch | |
import cv2 | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from .seq_aligner import get_word_inds | |
def text_under_image(image: np.ndarray, | |
text: str, | |
text_color: Tuple[int, int, int] = (0, 0, 0)) -> np.ndarray: | |
h, w, c = image.shape | |
offset = int(h * .2) | |
img = np.ones((h + offset, w, c), dtype=np.uint8) * 255 | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
img[:h] = image | |
textsize = cv2.getTextSize(text, font, 1, 2)[0] | |
text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2 | |
cv2.putText(img, text, (text_x, text_y), font, 1, text_color, 2) | |
return img | |
def view_images( | |
images: Union[np.ndarray, List[np.ndarray]], | |
num_rows: int = 1, | |
offset_ratio: float = 0.02, | |
save_image: bool = False, | |
fp: Union[Text, pathlib.Path, BinaryIO] = None, | |
) -> np.ndarray: | |
if save_image: | |
assert fp is not None | |
if isinstance(images, list): | |
images = np.concatenate(images, axis=0) | |
if isinstance(images, np.ndarray) and images.ndim == 4: | |
num_empty = images.shape[0] % num_rows | |
else: | |
images = [images] if not isinstance(images, list) else images | |
num_empty = len(images) % num_rows | |
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255 | |
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty | |
num_items = len(images) | |
# Calculate the composite image | |
h, w, c = images[0].shape | |
offset = int(h * offset_ratio) | |
num_cols = int(np.ceil(num_items / num_rows)) # count the number of columns | |
image_h = h * num_rows + offset * (num_rows - 1) | |
image_w = w * num_cols + offset * (num_cols - 1) | |
assert image_h > 0, "Invalid image height: {} (num_rows={}, offset_ratio={}, num_items={})".format( | |
image_h, num_rows, offset_ratio, num_items) | |
assert image_w > 0, "Invalid image width: {} (num_cols={}, offset_ratio={}, num_items={})".format( | |
image_w, num_cols, offset_ratio, num_items) | |
image_ = np.ones((image_h, image_w, 3), dtype=np.uint8) * 255 | |
# Ensure that the last row is filled with empty images if necessary | |
if len(images) % num_cols > 0: | |
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255 | |
num_empty = num_cols - len(images) % num_cols | |
images += [empty_images] * num_empty | |
for i in range(num_rows): | |
for j in range(num_cols): | |
k = i * num_cols + j | |
if k >= num_items: | |
break | |
image_[i * (h + offset): i * (h + offset) + h, j * (w + offset): j * (w + offset) + w] = images[k] | |
pil_img = Image.fromarray(image_) | |
if save_image: | |
pil_img.save(fp) | |
return pil_img | |
def update_alpha_time_word(alpha, | |
bounds: Union[float, Tuple[float, float]], | |
prompt_ind: int, | |
word_inds: Optional[torch.Tensor] = None): | |
if isinstance(bounds, float): | |
bounds = 0, bounds | |
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0]) | |
if word_inds is None: | |
word_inds = torch.arange(alpha.shape[2]) | |
alpha[: start, prompt_ind, word_inds] = 0 | |
alpha[start: end, prompt_ind, word_inds] = 1 | |
alpha[end:, prompt_ind, word_inds] = 0 | |
return alpha | |
def get_time_words_attention_alpha(prompts, num_steps, | |
cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]], | |
tokenizer, | |
max_num_words=77): | |
if type(cross_replace_steps) is not dict: | |
cross_replace_steps = {"default_": cross_replace_steps} | |
if "default_" not in cross_replace_steps: | |
cross_replace_steps["default_"] = (0., 1.) | |
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words) | |
for i in range(len(prompts) - 1): | |
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], | |
i) | |
for key, item in cross_replace_steps.items(): | |
if key != "default_": | |
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))] | |
for i, ind in enumerate(inds): | |
if len(ind) > 0: | |
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind) | |
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words) | |
return alpha_time_words | |