Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
# Copyright (c) XiMing Xing. All rights reserved. | |
# Author: XiMing Xing | |
# Description: | |
import pathlib | |
from PIL import Image | |
from functools import partial | |
import torch | |
import torch.nn.functional as F | |
from torchvision import transforms | |
from torchvision.datasets.folder import is_image_file | |
from tqdm.auto import tqdm | |
import numpy as np | |
from skimage.color import rgb2gray | |
import diffusers | |
from pytorch_svgrender.libs.engine import ModelState | |
from pytorch_svgrender.libs.metric.lpips_origin import LPIPS | |
from pytorch_svgrender.libs.metric.piq.perceptual import DISTS as DISTS_PIQ | |
from pytorch_svgrender.libs.metric.clip_score import CLIPScoreWrapper | |
from pytorch_svgrender.painter.diffsketcher import ( | |
Painter, SketchPainterOptimizer, Token2AttnMixinASDSPipeline, Token2AttnMixinASDSSDXLPipeline) | |
from pytorch_svgrender.plt import plot_img, plot_couple | |
from pytorch_svgrender.painter.diffsketcher.sketch_utils import plt_attn | |
from pytorch_svgrender.painter.clipasso.sketch_utils import get_mask_u2net, fix_image_scale | |
from pytorch_svgrender.painter.diffsketcher.stroke_pruning import paths_pruning | |
from pytorch_svgrender.token2attn.attn_control import AttentionStore, EmptyControl | |
from pytorch_svgrender.token2attn.ptp_utils import view_images | |
from pytorch_svgrender.diffusers_warp import init_StableDiffusion_pipeline, model2res | |
class DiffSketcherPipeline(ModelState): | |
def __init__(self, args): | |
attn_log_ = "" | |
if args.x.attention_init: | |
attn_log_ = f"-tk{args.x.token_ind}" \ | |
f"{'-XDoG' if args.x.xdog_intersec else ''}" \ | |
f"-atc{args.x.attn_coeff}-tau{args.x.softmax_temp}" | |
logdir_ = f"sd{args.seed}-im{args.x.image_size}" \ | |
f"-P{args.x.num_paths}W{args.x.width}{'OP' if args.x.optim_opacity else 'BL'}" \ | |
f"{attn_log_}" | |
super().__init__(args, log_path_suffix=logdir_) | |
# create log dir | |
self.png_logs_dir = self.result_path / "png_logs" | |
self.svg_logs_dir = self.result_path / "svg_logs" | |
self.attn_logs_dir = self.result_path / "attn_logs" | |
if self.accelerator.is_main_process: | |
self.png_logs_dir.mkdir(parents=True, exist_ok=True) | |
self.svg_logs_dir.mkdir(parents=True, exist_ok=True) | |
self.attn_logs_dir.mkdir(parents=True, exist_ok=True) | |
# make video log | |
self.make_video = self.args.mv | |
if self.make_video: | |
self.frame_idx = 0 | |
self.frame_log_dir = self.result_path / "frame_logs" | |
self.frame_log_dir.mkdir(parents=True, exist_ok=True) | |
if self.x_cfg.model_id == "sdxl": | |
# default LSDSSDXLPipeline scheduler is EulerDiscreteScheduler | |
# when LSDSSDXLPipeline calls, scheduler.timesteps will change in step 4 | |
# which causes problem in sds add_noise() function | |
# because the random t may not in scheduler.timesteps | |
custom_pipeline = Token2AttnMixinASDSSDXLPipeline | |
custom_scheduler = diffusers.DPMSolverMultistepScheduler | |
self.x_cfg.cross_attn_res = self.x_cfg.cross_attn_res * 2 | |
elif self.x_cfg.model_id == 'sd21': | |
custom_pipeline = Token2AttnMixinASDSPipeline | |
custom_scheduler = diffusers.DDIMScheduler | |
else: # sd14, sd15 | |
custom_pipeline = Token2AttnMixinASDSPipeline | |
custom_scheduler = diffusers.DDIMScheduler | |
self.diffusion = init_StableDiffusion_pipeline( | |
self.x_cfg.model_id, | |
custom_pipeline=custom_pipeline, | |
custom_scheduler=custom_scheduler, | |
device=self.device, | |
local_files_only=not args.diffuser.download, | |
force_download=args.diffuser.force_download, | |
resume_download=args.diffuser.resume_download, | |
ldm_speed_up=self.x_cfg.ldm_speed_up, | |
enable_xformers=self.x_cfg.enable_xformers, | |
gradient_checkpoint=self.x_cfg.gradient_checkpoint, | |
) | |
self.g_device = torch.Generator(device=self.device).manual_seed(args.seed) | |
# init clip model and clip score wrapper | |
self.cargs = self.x_cfg.clip | |
self.clip_score_fn = CLIPScoreWrapper(self.cargs.model_name, | |
device=self.device, | |
visual_score=True, | |
feats_loss_type=self.cargs.feats_loss_type, | |
feats_loss_weights=self.cargs.feats_loss_weights, | |
fc_loss_weight=self.cargs.fc_loss_weight) | |
def load_render(self, target_img, attention_map, mask=None): | |
renderer = Painter(self.x_cfg, | |
self.args.diffvg, | |
num_strokes=self.x_cfg.num_paths, | |
num_segments=self.x_cfg.num_segments, | |
canvas_size=self.x_cfg.image_size, | |
device=self.device, | |
target_im=target_img, | |
attention_map=attention_map, | |
mask=mask) | |
return renderer | |
def extract_ldm_attn(self, prompts): | |
# init controller | |
controller = AttentionStore() if self.x_cfg.attention_init else EmptyControl() | |
height = width = model2res(self.x_cfg.model_id) | |
outputs = self.diffusion(prompt=[prompts], | |
negative_prompt=self.args.neg_prompt, | |
height=height, | |
width=width, | |
controller=controller, | |
num_inference_steps=self.x_cfg.num_inference_steps, | |
guidance_scale=self.x_cfg.guidance_scale, | |
generator=self.g_device) | |
target_file = self.result_path / "ldm_generated_image.png" | |
view_images([np.array(img) for img in outputs.images], save_image=True, fp=target_file) | |
if self.x_cfg.attention_init: | |
"""ldm cross-attention map""" | |
cross_attention_maps, tokens = \ | |
self.diffusion.get_cross_attention([prompts], | |
controller, | |
res=self.x_cfg.cross_attn_res, | |
from_where=("up", "down"), | |
save_path=self.result_path / "cross_attn.png") | |
self.print(f"the length of tokens is {len(tokens)}, select {self.x_cfg.token_ind}-th token") | |
# [res, res, seq_len] | |
self.print(f"origin cross_attn_map shape: {cross_attention_maps.shape}") | |
# [res, res] | |
cross_attn_map = cross_attention_maps[:, :, self.x_cfg.token_ind] | |
self.print(f"select cross_attn_map shape: {cross_attn_map.shape}\n") | |
cross_attn_map = 255 * cross_attn_map / cross_attn_map.max() | |
# [res, res, 3] | |
cross_attn_map = cross_attn_map.unsqueeze(-1).expand(*cross_attn_map.shape, 3) | |
# [3, res, res] | |
cross_attn_map = cross_attn_map.permute(2, 0, 1).unsqueeze(0) | |
# [3, clip_size, clip_size] | |
cross_attn_map = F.interpolate(cross_attn_map, size=self.x_cfg.image_size, mode='bicubic') | |
cross_attn_map = torch.clamp(cross_attn_map, min=0, max=255) | |
# rgb to gray | |
cross_attn_map = rgb2gray(cross_attn_map.squeeze(0).permute(1, 2, 0)).astype(np.float32) | |
# torch to numpy | |
if cross_attn_map.shape[-1] != self.x_cfg.image_size and cross_attn_map.shape[-2] != self.x_cfg.image_size: | |
cross_attn_map = cross_attn_map.reshape(self.x_cfg.image_size, self.x_cfg.image_size) | |
# to [0, 1] | |
cross_attn_map = (cross_attn_map - cross_attn_map.min()) / (cross_attn_map.max() - cross_attn_map.min()) | |
"""ldm self-attention map""" | |
self_attention_maps, svd, vh_ = \ | |
self.diffusion.get_self_attention_comp([prompts], | |
controller, | |
res=self.x_cfg.self_attn_res, | |
from_where=("up", "down"), | |
img_size=self.x_cfg.image_size, | |
max_com=self.x_cfg.max_com, | |
save_path=self.result_path) | |
# comp self-attention map | |
if self.x_cfg.mean_comp: | |
self_attn = np.mean(vh_, axis=0) | |
self.print(f"use the mean of {self.x_cfg.max_com} comps.") | |
else: | |
self_attn = vh_[self.x_cfg.comp_idx] | |
self.print(f"select {self.x_cfg.comp_idx}-th comp.") | |
# to [0, 1] | |
self_attn = (self_attn - self_attn.min()) / (self_attn.max() - self_attn.min()) | |
# visual final self-attention | |
self_attn_vis = np.copy(self_attn) | |
self_attn_vis = self_attn_vis * 255 | |
self_attn_vis = np.repeat(np.expand_dims(self_attn_vis, axis=2), 3, axis=2).astype(np.uint8) | |
view_images(self_attn_vis, save_image=True, fp=self.result_path / "self-attn-final.png") | |
"""attention map fusion""" | |
attn_map = self.x_cfg.attn_coeff * cross_attn_map + (1 - self.x_cfg.attn_coeff) * self_attn | |
# to [0, 1] | |
attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min()) | |
self.print(f"-> fusion attn_map: {attn_map.shape}") | |
else: | |
attn_map = None | |
return target_file.as_posix(), attn_map | |
def clip_norm_(self): | |
return transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) | |
def clip_pair_augment(self, | |
x: torch.Tensor, | |
y: torch.Tensor, | |
im_res: int, | |
augments: str = "affine_norm", | |
num_aug: int = 4): | |
# init augmentations | |
augment_list = [] | |
if "affine" in augments: | |
augment_list.append( | |
transforms.RandomPerspective(fill=0, p=1.0, distortion_scale=0.5) | |
) | |
augment_list.append( | |
transforms.RandomResizedCrop(im_res, scale=(0.8, 0.8), ratio=(1.0, 1.0)) | |
) | |
augment_list.append(self.clip_norm_) # CLIP Normalize | |
# compose augmentations | |
augment_compose = transforms.Compose(augment_list) | |
# make augmentation pairs | |
x_augs, y_augs = [self.clip_score_fn.normalize(x)], [self.clip_score_fn.normalize(y)] | |
# repeat N times | |
for n in range(num_aug): | |
augmented_pair = augment_compose(torch.cat([x, y])) | |
x_augs.append(augmented_pair[0].unsqueeze(0)) | |
y_augs.append(augmented_pair[1].unsqueeze(0)) | |
xs = torch.cat(x_augs, dim=0) | |
ys = torch.cat(y_augs, dim=0) | |
return xs, ys | |
def painterly_rendering(self, prompt): | |
# log prompts | |
self.print(f"prompt: {prompt}") | |
self.print(f"negative_prompt: {self.args.neg_prompt}\n") | |
# init attention | |
target_file, attention_map = self.extract_ldm_attn(prompt) | |
timesteps_ = self.diffusion.scheduler.timesteps.cpu().numpy().tolist() | |
self.print(f"{len(timesteps_)} denoising steps, {timesteps_}") | |
perceptual_loss_fn = None | |
if self.x_cfg.perceptual.coeff > 0: | |
if self.x_cfg.perceptual.name == "lpips": | |
lpips_loss_fn = LPIPS(net=self.x_cfg.perceptual.lpips_net).to(self.device) | |
perceptual_loss_fn = partial(lpips_loss_fn.forward, return_per_layer=False, normalize=False) | |
elif self.x_cfg.perceptual.name == "dists": | |
perceptual_loss_fn = DISTS_PIQ() | |
inputs, mask = self.get_target(target_file, | |
self.x_cfg.image_size, | |
self.result_path, | |
self.x_cfg.u2net_path, | |
self.x_cfg.mask_object, | |
self.x_cfg.fix_scale, | |
self.device) | |
inputs = inputs.detach() # inputs as GT | |
self.print("inputs shape: ", inputs.shape) | |
# load renderer | |
renderer = self.load_render(inputs, attention_map, mask=mask) | |
# init img | |
img = renderer.init_image(stage=0) | |
self.print("init_image shape: ", img.shape) | |
plot_img(img, self.result_path, fname="init_sketch") | |
# load optimizer | |
optimizer = SketchPainterOptimizer(renderer, | |
self.x_cfg.lr, | |
self.x_cfg.optim_opacity, | |
self.x_cfg.optim_rgba, | |
self.x_cfg.color_lr, | |
self.x_cfg.optim_width, | |
self.x_cfg.width_lr) | |
optimizer.init_optimizers() | |
# log params | |
self.print(f"-> Painter point Params: {len(renderer.get_points_params())}") | |
self.print(f"-> Painter width Params: {len(renderer.get_width_parameters())}") | |
self.print(f"-> Painter opacity Params: {len(renderer.get_color_parameters())}") | |
total_iter = self.x_cfg.num_iter | |
best_visual_loss, best_semantic_loss = 100, 100 | |
min_delta = 1e-6 | |
self.print(f"\ntotal optimization steps: {total_iter}") | |
with tqdm(initial=self.step, total=total_iter, disable=not self.accelerator.is_main_process) as pbar: | |
while self.step < total_iter: | |
raster_sketch = renderer.get_image().to(self.device) | |
if self.make_video and (self.step % self.args.framefreq == 0 or self.step == total_iter - 1): | |
plot_img(raster_sketch, self.frame_log_dir, fname=f"iter{self.frame_idx}") | |
self.frame_idx += 1 | |
# ASDS loss | |
sds_loss, grad = torch.tensor(0), torch.tensor(0) | |
if self.step >= self.x_cfg.sds.warmup: | |
grad_scale = self.x_cfg.sds.grad_scale if self.step > self.x_cfg.sds.warmup else 0 | |
sds_loss, grad = self.diffusion.score_distillation_sampling( | |
raster_sketch, | |
crop_size=self.x_cfg.sds.crop_size, | |
augments=self.x_cfg.sds.augmentations, | |
prompt=[prompt], | |
negative_prompt=self.args.neg_prompt, | |
guidance_scale=self.x_cfg.sds.guidance_scale, | |
grad_scale=grad_scale, | |
t_range=list(self.x_cfg.sds.t_range), | |
) | |
# CLIP data augmentation | |
raster_sketch_aug, inputs_aug = self.clip_pair_augment( | |
raster_sketch, inputs, | |
im_res=224, | |
augments=self.cargs.augmentations, | |
num_aug=self.cargs.num_aug | |
) | |
# clip visual loss | |
total_visual_loss = torch.tensor(0) | |
l_clip_fc, l_clip_conv, clip_conv_loss_sum = torch.tensor(0), [], torch.tensor(0) | |
if self.x_cfg.clip.vis_loss > 0: | |
l_clip_fc, l_clip_conv = self.clip_score_fn.compute_visual_distance( | |
raster_sketch_aug, inputs_aug, clip_norm=False | |
) | |
clip_conv_loss_sum = sum(l_clip_conv) | |
total_visual_loss = self.x_cfg.clip.vis_loss * (clip_conv_loss_sum + l_clip_fc) | |
# text-visual loss | |
l_tvd = torch.tensor(0.) | |
if self.cargs.text_visual_coeff > 0: | |
l_tvd = self.clip_score_fn.compute_text_visual_distance( | |
raster_sketch_aug, prompt | |
) * self.cargs.text_visual_coeff | |
# perceptual loss | |
l_percep = torch.tensor(0.) | |
if perceptual_loss_fn is not None: | |
l_perceptual = perceptual_loss_fn(raster_sketch, inputs).mean() | |
l_percep = l_perceptual * self.x_cfg.perceptual.coeff | |
# total loss | |
loss = sds_loss + total_visual_loss + l_tvd + l_percep | |
# optimization | |
optimizer.zero_grad_() | |
loss.backward() | |
optimizer.step_() | |
# update lr | |
if self.x_cfg.lr_schedule: | |
optimizer.update_lr(self.step, self.x_cfg.decay_steps) | |
# records | |
pbar.set_description( | |
f"lr: {optimizer.get_lr():.2f}, " | |
f"l_total: {loss.item():.4f}, " | |
f"l_clip_fc: {l_clip_fc.item():.4f}, " | |
f"l_clip_conv({len(l_clip_conv)}): {clip_conv_loss_sum.item():.4f}, " | |
f"l_tvd: {l_tvd.item():.4f}, " | |
f"l_percep: {l_percep.item():.4f}, " | |
f"sds: {grad.item():.4e}" | |
) | |
# log raster and svg | |
if self.step % self.args.save_step == 0 and self.accelerator.is_main_process: | |
# log png | |
plot_couple(inputs, | |
raster_sketch, | |
self.step, | |
prompt=prompt, | |
output_dir=self.png_logs_dir.as_posix(), | |
fname=f"iter{self.step}") | |
# log svg | |
renderer.save_svg(self.svg_logs_dir.as_posix(), f"svg_iter{self.step}") | |
# log cross attn | |
if self.x_cfg.log_cross_attn: | |
controller = AttentionStore() | |
_, _ = self.diffusion.get_cross_attention([prompt], | |
controller, | |
res=self.x_cfg.cross_attn_res, | |
from_where=("up", "down"), | |
save_path=self.attn_logs_dir / f"iter{self.step}.png") | |
# logging the best raster images and SVG | |
if self.step % self.args.eval_step == 0 and self.accelerator.is_main_process: | |
with torch.no_grad(): | |
# visual metric | |
l_clip_fc, l_clip_conv = self.clip_score_fn.compute_visual_distance( | |
raster_sketch_aug, inputs_aug, clip_norm=False | |
) | |
loss_eval = sum(l_clip_conv) + l_clip_fc | |
cur_delta = loss_eval.item() - best_visual_loss | |
if abs(cur_delta) > min_delta and cur_delta < 0: | |
best_visual_loss = loss_eval.item() | |
best_iter_v = self.step | |
plot_couple(inputs, | |
raster_sketch, | |
best_iter_v, | |
prompt=prompt, | |
output_dir=self.result_path.as_posix(), | |
fname="visual_best") | |
renderer.save_svg(self.result_path.as_posix(), "visual_best") | |
# semantic metric | |
loss_eval = self.clip_score_fn.compute_text_visual_distance( | |
raster_sketch_aug, prompt | |
) | |
cur_delta = loss_eval.item() - best_semantic_loss | |
if abs(cur_delta) > min_delta and cur_delta < 0: | |
best_semantic_loss = loss_eval.item() | |
best_iter_s = self.step | |
plot_couple(inputs, | |
raster_sketch, | |
best_iter_s, | |
prompt=prompt, | |
output_dir=self.result_path.as_posix(), | |
fname="semantic_best") | |
renderer.save_svg(self.result_path.as_posix(), "semantic_best") | |
# log attention, just once | |
if self.step == 0 and self.x_cfg.attention_init and self.accelerator.is_main_process: | |
plt_attn(renderer.get_attn(), | |
renderer.get_thresh(), | |
inputs, | |
renderer.get_inds(), | |
(self.result_path / "attention_map.png").as_posix()) | |
self.step += 1 | |
pbar.update(1) | |
# saving final result | |
renderer.save_svg(self.svg_logs_dir.as_posix(), "final_svg_tmp") | |
# stroke pruning | |
if self.args.opacity_delta != 0: | |
paths_pruning(self.svg_logs_dir / "final_svg_tmp.svg", self.result_path / "final_result.svg", | |
self.x_cfg.opacity_delta) | |
final_raster_sketch = renderer.get_image().to(self.device) | |
plot_img(final_raster_sketch, | |
output_dir=self.result_path, | |
fname='final_render') | |
if self.make_video: | |
from subprocess import call | |
call([ | |
"ffmpeg", | |
"-framerate", f"{self.args.framerate}", | |
"-i", (self.frame_log_dir / "iter%d.png").as_posix(), | |
"-vb", "20M", | |
(self.result_path / "diffsketcher_rendering.mp4").as_posix() | |
]) | |
self.close(msg="painterly rendering complete.") | |
def get_target(self, | |
target_file, | |
image_size, | |
output_dir, | |
u2net_path, | |
mask_object, | |
fix_scale, | |
device): | |
if not is_image_file(target_file): | |
raise TypeError(f"{target_file} is not image file.") | |
target = Image.open(target_file) | |
if target.mode == "RGBA": | |
# Create a white rgba background | |
new_image = Image.new("RGBA", target.size, "WHITE") | |
# Paste the image on the background. | |
new_image.paste(target, (0, 0), target) | |
target = new_image | |
target = target.convert("RGB") | |
# U2Net mask | |
mask = target | |
if mask_object: | |
if pathlib.Path(u2net_path).exists(): | |
masked_im, mask = get_mask_u2net(target, output_dir, u2net_path, device) | |
target = masked_im | |
else: | |
self.print(f"'{u2net_path}' is not exist, disable mask target") | |
if fix_scale: | |
target = fix_image_scale(target) | |
# define image transforms | |
transforms_ = [] | |
if target.size[0] != target.size[1]: | |
transforms_.append(transforms.Resize((image_size, image_size))) | |
else: | |
transforms_.append(transforms.Resize(image_size)) | |
transforms_.append(transforms.CenterCrop(image_size)) | |
transforms_.append(transforms.ToTensor()) | |
# preprocess | |
data_transforms = transforms.Compose(transforms_) | |
target_ = data_transforms(target).unsqueeze(0).to(self.device) | |
return target_, mask | |