Spaces:
Running
Running
import shutil | |
from pathlib import Path | |
import imageio | |
import numpy as np | |
import torch | |
from PIL import Image | |
from pytorch_svgrender.libs.engine import ModelState | |
from pytorch_svgrender.painter.clipascene import Painter, PainterOptimizer, Loss | |
from pytorch_svgrender.painter.clipascene.lama_utils import apply_inpaint | |
from pytorch_svgrender.painter.clipascene.scripts_utils import read_svg | |
from pytorch_svgrender.painter.clipascene.sketch_utils import plot_attn, get_mask_u2net, fix_image_scale | |
from pytorch_svgrender.plt import plot_img, plot_couple | |
from skimage.transform import resize | |
from torchvision import transforms | |
from torchvision.transforms import InterpolationMode | |
from tqdm.auto import tqdm | |
class CLIPascenePipeline(ModelState): | |
def __init__(self, args): | |
logdir_ = f"sd{args.seed}" \ | |
f"-im{args.x.image_size}" \ | |
f"-P{args.x.num_paths}W{args.x.width}" | |
super().__init__(args, log_path_suffix=logdir_) | |
def painterly_rendering(self, image_path): | |
foreground_target, background_target = self.preprocess_image(image_path) | |
background_output_dir = self.run_background(background_target) | |
foreground_output_dir = self.run_foreground(foreground_target) | |
self.combine(background_output_dir, foreground_output_dir, self.device) | |
self.close(msg="painterly rendering complete.") | |
def preprocess_image(self, image_path): | |
image_path = Path(image_path) | |
scene_path = self.result_path / "scene" | |
background_path = self.result_path / "background" | |
if self.accelerator.is_main_process: | |
scene_path.mkdir(parents=True, exist_ok=True) | |
background_path.mkdir(parents=True, exist_ok=True) | |
im = Image.open(image_path) | |
max_size = max(im.size[0], im.size[1]) | |
scaled_path = scene_path / f"{image_path.stem}.png" | |
if max_size > 512: | |
im = Image.open(image_path).convert("RGB").resize((512, 512)) | |
im.save(scaled_path) | |
else: | |
shutil.copyfile(image_path, scaled_path) | |
scaled_img = Image.open(scaled_path) | |
mask = get_mask_u2net(scaled_img, scene_path, self.args.x.u2net_path, preprocess=True, device=self.device) | |
masked_path = scene_path / f"{image_path.stem}_mask.png" | |
imageio.imsave(masked_path, mask) | |
apply_inpaint(scene_path, background_path, self.device) | |
return scaled_path, background_path / f"{image_path.stem}_mask.png" | |
def run_background(self, target_file): | |
print("=====Start background=====") | |
self.args.x.resize_obj = 0 | |
self.args.x.mask_object = 0 | |
clip_conv_layer_weights_int = [0 for _ in range(12)] | |
clip_conv_layer_weights_int[self.args.x.background_layer] = 1 | |
clip_conv_layer_weights_str = [str(j) for j in clip_conv_layer_weights_int] | |
self.args.x.clip_conv_layer_weights = ','.join(clip_conv_layer_weights_str) | |
output_dir = self.result_path / "background" | |
if self.accelerator.is_main_process: | |
output_dir.mkdir(parents=True, exist_ok=True) | |
self.paint(target_file, output_dir, self.args.x.background_num_iter) | |
print("=====End background=====") | |
return output_dir | |
def run_foreground(self, target_file): | |
print("=====Start foreground=====") | |
self.args.x.resize_obj = 1 | |
if self.args.x.foreground_layer != 4: | |
self.args.x.gradnorm = 1 | |
self.args.x.mask_object = 1 | |
clip_conv_layer_weights_int = [0 for _ in range(12)] | |
clip_conv_layer_weights_int[4] = 0.5 | |
clip_conv_layer_weights_int[self.args.x.foreground_layer] = 1 | |
clip_conv_layer_weights_str = [str(j) for j in clip_conv_layer_weights_int] | |
self.args.x.clip_conv_layer_weights = ','.join(clip_conv_layer_weights_str) | |
output_dir = self.result_path / "object" | |
if self.accelerator.is_main_process: | |
output_dir.mkdir(parents=True, exist_ok=True) | |
self.paint(target_file, output_dir, self.args.x.foreground_num_iter) | |
print("=====End foreground=====") | |
return output_dir | |
def paint(self, target, output_dir, num_iter): | |
png_log_dir = output_dir / "png_logs" | |
svg_log_dir = output_dir / "svg_logs" | |
if self.accelerator.is_main_process: | |
png_log_dir.mkdir(parents=True, exist_ok=True) | |
svg_log_dir.mkdir(parents=True, exist_ok=True) | |
# make video log | |
self.make_video = self.args.mv | |
if self.make_video: | |
self.frame_idx = 0 | |
self.frame_log_dir = output_dir / "frame_logs" | |
self.frame_log_dir.mkdir(parents=True, exist_ok=True) | |
# preprocess input image | |
inputs, mask = self.get_target(target, | |
self.args.x.image_size, | |
output_dir, | |
self.args.x.resize_obj, | |
self.args.x.u2net_path, | |
self.args.x.mask_object, | |
self.args.x.fix_scale, | |
self.device) | |
plot_img(inputs, output_dir, fname="target") | |
loss_func = Loss(self.x_cfg, mask, self.device) | |
# init renderer | |
renderer = self.load_renderer(inputs, mask) | |
# init optimizer | |
optimizer = PainterOptimizer(self.x_cfg, renderer) | |
best_loss, best_fc_loss, best_num_strokes = 100, 100, self.args.x.num_paths | |
best_iter, best_iter_fc = 0, 0 | |
min_delta = 1e-7 | |
renderer.set_random_noise(0) | |
renderer.init_image(stage=0) | |
renderer.save_svg(svg_log_dir, "init_svg") | |
optimizer.init_optimizers() | |
if self.args.x.switch_loss: | |
# start with width optim and than switch every switch_loss iterations | |
renderer.turn_off_points_optim() | |
optimizer.turn_off_points_optim() | |
with torch.no_grad(): | |
renderer.get_image("init").to(self.device) | |
renderer.save_svg(self.result_path, "init") | |
total_step = num_iter | |
step = 0 | |
with tqdm(initial=step, total=total_step, disable=not self.accelerator.is_main_process) as pbar: | |
while step < total_step: | |
optimizer.zero_grad_() | |
sketches = renderer.get_image().to(self.device) | |
if self.make_video and (step % self.args.framefreq == 0 or step == total_step - 1): | |
plot_img(sketches, self.frame_log_dir, fname=f"iter{self.frame_idx}") | |
self.frame_idx += 1 | |
losses_dict_weighted, _, _ = loss_func(sketches, inputs.detach(), step, | |
renderer.get_widths(), renderer, | |
optimizer, mode="train", | |
width_opt=renderer.width_optim) | |
loss = sum(list(losses_dict_weighted.values())) | |
loss.backward() | |
optimizer.step_() | |
if step % self.args.x.save_step == 0: | |
plot_couple(inputs, | |
sketches, | |
self.step, | |
output_dir=png_log_dir.as_posix(), | |
fname=f"iter{step}") | |
renderer.save_svg(svg_log_dir.as_posix(), f"svg_iter{step}") | |
if step % self.args.x.eval_step == 0: | |
with torch.no_grad(): | |
losses_dict_weighted_eval, _, _ = loss_func( | |
sketches, | |
inputs, | |
step, | |
renderer.get_widths(), | |
renderer=renderer, | |
mode="eval", | |
width_opt=renderer.width_optim) | |
loss_eval = sum(list(losses_dict_weighted_eval.values())) | |
cur_delta = loss_eval.item() - best_loss | |
if abs(cur_delta) > min_delta: | |
if cur_delta < 0: | |
best_loss = loss_eval.item() | |
best_iter = step | |
plot_couple(inputs, | |
sketches, | |
best_iter, | |
output_dir=output_dir.as_posix(), | |
fname="best_iter") | |
renderer.save_svg(output_dir.as_posix(), "best_iter") | |
if step == 0 and self.x_cfg.attention_init and self.accelerator.is_main_process: | |
plot_attn(renderer.get_attn(), | |
renderer.get_thresh(), | |
inputs, | |
renderer.get_inds(), | |
(output_dir / "attention_map.png").as_posix(), | |
self.x_cfg.saliency_model) | |
if self.args.x.switch_loss: | |
if step > 0 and step % self.args.x.switch_loss == 0: | |
renderer.switch_opt() | |
optimizer.switch_opt() | |
step += 1 | |
pbar.update(1) | |
if self.make_video: | |
from subprocess import call | |
call([ | |
"ffmpeg", | |
"-framerate", f"{self.args.framerate}", | |
"-i", (self.frame_log_dir / "iter%d.png").as_posix(), | |
"-vb", "20M", | |
(output_dir / f"clipascene_sketch.mp4").as_posix() | |
]) | |
def load_renderer(self, target_im=None, mask=None): | |
renderer = Painter(method_cfg=self.x_cfg, | |
diffvg_cfg=self.args.diffvg, | |
num_strokes=self.x_cfg.num_paths, | |
canvas_size=self.x_cfg.image_size, | |
device=self.device, | |
target_im=target_im, | |
mask=mask) | |
return renderer | |
def get_target(self, | |
target_file, | |
image_size, | |
output_dir, | |
resize_obj, | |
u2net_path, | |
mask_object, | |
fix_scale, | |
device): | |
target = Image.open(target_file) | |
if target.mode == "RGBA": | |
# Create a white rgba background | |
new_image = Image.new("RGBA", target.size, "WHITE") | |
# Paste the image on the background. | |
new_image.paste(target, (0, 0), target) | |
target = new_image | |
target = target.convert("RGB") | |
# U^2 net mask | |
masked_im, mask = get_mask_u2net(target, output_dir, u2net_path, resize_obj=resize_obj, device=device) | |
if mask_object: | |
target = masked_im | |
if fix_scale: | |
target = fix_image_scale(target) | |
transforms_ = [] | |
if target.size[0] != target.size[1]: | |
transforms_.append( | |
transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC) | |
) | |
else: | |
transforms_.append(transforms.Resize(image_size, interpolation=InterpolationMode.BICUBIC)) | |
transforms_.append(transforms.CenterCrop(image_size)) | |
transforms_.append(transforms.ToTensor()) | |
data_transforms = transforms.Compose(transforms_) | |
target_ = data_transforms(target).unsqueeze(0).to(self.device) | |
return target_, mask | |
def combine(self, background_output_dir, foreground_output_dir, device, output_size=448): | |
params_path = foreground_output_dir / "resize_params.npy" | |
params = None | |
if params_path.exists(): | |
params = np.load(params_path, allow_pickle=True)[()] | |
mask_path = foreground_output_dir / "mask.png" | |
mask = imageio.imread(mask_path) | |
mask = resize(mask, (output_size, output_size), anti_aliasing=False) | |
object_svg_path = foreground_output_dir / "best_iter.svg" | |
raster_o = read_svg(object_svg_path, resize_obj=1, params=params, multiply=1.8, device=device) | |
background_svg_path = background_output_dir / "best_iter.svg" | |
raster_b = read_svg(background_svg_path, resize_obj=0, params=params, multiply=1.8, device=device) | |
raster_b[mask == 1] = 1 | |
raster_b[raster_o != 1] = raster_o[raster_o != 1] | |
raster_b = torch.from_numpy(raster_b).unsqueeze(0).permute(0, 3, 1, 2).to(device) | |
plot_img(raster_b, self.result_path, fname="combined") | |