File size: 9,046 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# -*- coding: utf-8 -*-
# Copyright (c) XiMing Xing. All rights reserved.
# Author: XiMing Xing
# Description:
from PIL import Image

import torch
from tqdm.auto import tqdm
from torchvision import transforms
from torchvision.transforms import InterpolationMode
from torchvision.datasets.folder import is_image_file

from pytorch_svgrender.libs.engine import ModelState
from pytorch_svgrender.painter.clipasso import Painter, PainterOptimizer, Loss
from pytorch_svgrender.painter.clipasso.sketch_utils import plot_attn, get_mask_u2net, fix_image_scale
from pytorch_svgrender.plt import plot_img, plot_couple, plot_img_title


class CLIPassoPipeline(ModelState):

    def __init__(self, args):
        logdir_ = f"sd{args.seed}" \
                  f"-im{args.x.image_size}" \
                  f"{'-mask' if args.x.mask_object else ''}" \
                  f"{'-XDoG' if args.x.xdog_intersec else ''}" \
                  f"-P{args.x.num_paths}W{args.x.width}{'OP' if args.x.force_sparse else 'BL'}" \
                  f"-tau{args.x.softmax_temp}"
        super().__init__(args, log_path_suffix=logdir_)

        # create log dir
        self.png_logs_dir = self.result_path / "png_logs"
        self.svg_logs_dir = self.result_path / "svg_logs"
        if self.accelerator.is_main_process:
            self.png_logs_dir.mkdir(parents=True, exist_ok=True)
            self.svg_logs_dir.mkdir(parents=True, exist_ok=True)

        # make video log
        self.make_video = self.args.mv
        if self.make_video:
            self.frame_idx = 0
            self.frame_log_dir = self.result_path / "frame_logs"
            self.frame_log_dir.mkdir(parents=True, exist_ok=True)

    def painterly_rendering(self, image_path):
        loss_func = Loss(self.x_cfg, self.device)

        # preprocess input image
        inputs, mask = self.get_target(image_path,
                                       self.x_cfg.image_size,
                                       self.result_path,
                                       self.x_cfg.u2net_path,
                                       self.x_cfg.mask_object,
                                       self.x_cfg.fix_scale,
                                       self.device)
        plot_img(inputs, self.result_path, fname="input")

        # init renderer
        renderer = self.load_renderer(inputs, mask)
        img = renderer.init_image(stage=0)
        self.print("init_image shape: ", img.shape)
        plot_img(img, self.result_path, fname="init_img")

        # init optimizer
        optimizer = PainterOptimizer(renderer,
                                     self.x_cfg.num_iter,
                                     self.x_cfg.lr,
                                     self.x_cfg.force_sparse, self.x_cfg.color_lr)
        optimizer.init_optimizers()

        best_loss, best_fc_loss = 100, 100
        min_delta = 1e-5
        total_step = self.x_cfg.num_iter

        with tqdm(initial=self.step, total=total_step, disable=not self.accelerator.is_main_process) as pbar:
            while self.step < total_step:
                sketches = renderer.get_image().to(self.device)

                if self.make_video and (self.step % self.args.framefreq == 0 or self.step == total_step - 1):
                    plot_img(sketches, self.frame_log_dir, fname=f"iter{self.frame_idx}")
                    self.frame_idx += 1

                losses_dict = loss_func(sketches,
                                        inputs.detach(),
                                        renderer.get_color_parameters(),
                                        renderer,
                                        self.step,
                                        optimizer)
                loss = sum(list(losses_dict.values()))

                optimizer.zero_grad_()
                loss.backward()
                optimizer.step_()

                if self.x_cfg.lr_schedule:
                    optimizer.update_lr()

                pbar.set_description(f"L_train: {loss.item():.5f}")

                if self.step % self.args.save_step == 0 and self.accelerator.is_main_process:
                    plot_couple(inputs,
                                sketches,
                                self.step,
                                output_dir=self.png_logs_dir.as_posix(),
                                fname=f"iter{self.step}")
                    renderer.save_svg(self.svg_logs_dir.as_posix(), f"svg_iter{self.step}")

                if self.step % self.args.eval_step == 0 and self.accelerator.is_main_process:
                    with torch.no_grad():
                        losses_dict_eval = loss_func(
                            sketches,
                            inputs,
                            renderer.get_color_parameters(),
                            renderer.get_point_parameters(),
                            self.step,
                            optimizer,
                            mode="eval"
                        )
                        loss_eval = sum(list(losses_dict_eval.values()))

                        cur_delta = loss_eval.item() - best_loss
                        if abs(cur_delta) > min_delta and cur_delta < 0:
                            best_loss = loss_eval.item()
                            best_iter = self.step
                            plot_couple(inputs,
                                        sketches,
                                        best_iter,
                                        output_dir=self.result_path.as_posix(),
                                        fname="best_iter")
                            renderer.save_svg(self.result_path.as_posix(), "best_iter")

                if self.step == 0 and self.x_cfg.attention_init and self.accelerator.is_main_process:
                    plot_attn(renderer.get_attn(),
                              renderer.get_thresh(),
                              inputs,
                              renderer.get_inds(),
                              (self.result_path / "attention_map.png").as_posix(),
                              self.x_cfg.saliency_model)

                self.step += 1
                pbar.update(1)

        # log final results
        renderer.save_svg(self.result_path.as_posix(), "final_svg")
        final_raster_sketch = renderer.get_image().to(self.device)
        plot_img_title(final_raster_sketch,
                       title=f'final result - {self.step} step',
                       output_dir=self.result_path,
                       fname='final_render')

        if self.make_video:
            from subprocess import call
            call([
                "ffmpeg",
                "-framerate", f"{self.args.framerate}",
                "-i", (self.frame_log_dir / "iter%d.png").as_posix(),
                "-vb", "20M",
                (self.result_path / "clipasso_rendering.mp4").as_posix()
            ])

        self.close(msg="painterly rendering complete.")

    def load_renderer(self, target_im=None, mask=None):
        renderer = Painter(method_cfg=self.x_cfg,
                           diffvg_cfg=self.args.diffvg,
                           num_strokes=self.x_cfg.num_paths,
                           canvas_size=self.x_cfg.image_size,
                           device=self.device,
                           target_im=target_im,
                           mask=mask)
        return renderer

    def get_target(self,
                   target_file,
                   image_size,
                   output_dir,
                   u2net_path,
                   mask_object,
                   fix_scale,
                   device):
        if not is_image_file(target_file):
            raise TypeError(f"{target_file} is not image file.")
        target = Image.open(target_file)

        if target.mode == "RGBA":
            # Create a white rgba background
            new_image = Image.new("RGBA", target.size, "WHITE")
            # Paste the image on the background.
            new_image.paste(target, (0, 0), target)
            target = new_image
        target = target.convert("RGB")

        # U^2 net mask
        masked_im, mask = get_mask_u2net(target, output_dir, u2net_path, device)
        if mask_object:
            target = masked_im

        if fix_scale:
            target = fix_image_scale(target)

        transforms_ = []
        if target.size[0] != target.size[1]:
            transforms_.append(
                transforms.Resize((image_size, image_size),
                                  interpolation=InterpolationMode.BICUBIC)
            )
        else:
            transforms_.append(transforms.Resize(image_size,
                                                 interpolation=InterpolationMode.BICUBIC))
            transforms_.append(transforms.CenterCrop(image_size))

        transforms_.append(transforms.ToTensor())
        data_transforms = transforms.Compose(transforms_)
        target_ = data_transforms(target).unsqueeze(0).to(self.device)
        return target_, mask