Spaces:
Running
Running
File size: 6,539 Bytes
966ae59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
'''
@File : utils.py
@Time : 2023/04/05 19:18:00
@Auther : Jiazheng Xu
@Contact : [email protected]
* Based on CLIP code base
* https://github.com/openai/CLIP
* Checkpoint of CLIP/BLIP/Aesthetic are from:
* https://github.com/openai/CLIP
* https://github.com/salesforce/BLIP
* https://github.com/christophschuhmann/improved-aesthetic-predictor
'''
import os
import urllib
from typing import Union, List
import pathlib
import torch
from tqdm import tqdm
from huggingface_hub import hf_hub_download
from .ImageReward import ImageReward
from .models.CLIPScore import CLIPScore
from .models.BLIPScore import BLIPScore
from .models.AestheticScore import AestheticScore
_MODELS = {
"ImageReward-v1.0": "https://huggingface.co/THUDM/ImageReward/blob/main/ImageReward.pt",
}
def available_models() -> List[str]:
"""Returns the names of available ImageReward models"""
return list(_MODELS.keys())
def ImageReward_download(url: str, root: str):
os.makedirs(root, exist_ok=True)
filename = os.path.basename(url)
download_target = os.path.join(root, filename)
hf_hub_download(repo_id="THUDM/ImageReward", filename=filename, local_dir=root)
return download_target
def load(name: str = "ImageReward-v1.0",
device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu",
download_root: str = None,
med_config_path: str = None):
"""Load a ImageReward model
Parameters
----------
name: str
A model name listed by `ImageReward.available_models()`, or the path to a model checkpoint containing the state_dict
device: Union[str, torch.device]
The device to put the loaded model
download_root: str
path to download the model files; by default, it uses "~/.cache/ImageReward"
med_config_path: str
Returns
-------
model : torch.nn.Module
The ImageReward model
"""
if name in _MODELS:
download_root = download_root or "~/.cache/ImageReward"
download_root = pathlib.Path(download_root)
model_path = pathlib.Path(download_root) / 'ImageReward.pt'
if not model_path.exists():
model_path = ImageReward_download(_MODELS[name], root=download_root.as_posix())
elif os.path.isfile(name):
model_path = name
else:
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
print('-> load ImageReward model from %s' % model_path)
state_dict = torch.load(model_path, map_location='cpu')
# med_config
if med_config_path is None:
med_config_root = download_root or "~/.cache/ImageReward"
med_config_root = pathlib.Path(med_config_root)
med_config_path = med_config_root / 'med_config.json'
if not med_config_path.exists():
med_config_path = ImageReward_download("https://huggingface.co/THUDM/ImageReward/blob/main/med_config.json",
root=med_config_root.as_posix())
print('-> load ImageReward med_config from %s' % med_config_path)
model = ImageReward(device=device, med_config=med_config_path).to(device)
msg = model.load_state_dict(state_dict, strict=False)
model.eval()
return model
_SCORES = {
"CLIP": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
"BLIP": "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large.pth",
"Aesthetic": "https://github.com/christophschuhmann/improved-aesthetic-predictor/raw/main/sac%2Blogos%2Bava1-l14-linearMSE.pth",
}
def available_scores() -> List[str]:
"""Returns the names of available ImageReward scores"""
return list(_SCORES.keys())
def _download(url: str, root: str):
os.makedirs(root, exist_ok=True)
filename = os.path.basename(url)
download_target = os.path.join(root, filename)
if os.path.exists(download_target) and not os.path.isfile(download_target):
raise RuntimeError(f"{download_target} exists and is not a regular file")
if os.path.isfile(download_target):
return download_target
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True,
unit_divisor=1024) as loop:
while True:
buffer = source.read(8192)
if not buffer:
break
output.write(buffer)
loop.update(len(buffer))
return download_target
def load_score(name: str = "CLIP", device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu",
download_root: str = None):
"""Load a ImageReward model
Parameters
----------
name : str
A model name listed by `ImageReward.available_models()`
device : Union[str, torch.device]
The device to put the loaded model
download_root: str
path to download the model files; by default, it uses "~/.cache/ImageReward"
Returns
-------
model : torch.nn.Module
The ImageReward model
"""
model_download_root = download_root or os.path.expanduser("~/.cache/ImageReward")
if name in _SCORES:
model_path = _download(_SCORES[name], model_download_root)
else:
raise RuntimeError(f"Score {name} not found; available scores = {available_scores()}")
print('load checkpoint from %s' % model_path)
if name == "BLIP":
state_dict = torch.load(model_path, map_location='cpu')
med_config = ImageReward_download("https://huggingface.co/THUDM/ImageReward/blob/main/med_config.json",
model_download_root)
model = BLIPScore(med_config=med_config, device=device).to(device)
model.blip.load_state_dict(state_dict['model'], strict=False)
elif name == "CLIP":
model = CLIPScore(download_root=model_download_root, device=device).to(device)
elif name == "Aesthetic":
state_dict = torch.load(model_path, map_location='cpu')
model = AestheticScore(download_root=model_download_root, device=device).to(device)
model.mlp.load_state_dict(state_dict, strict=False)
else:
raise RuntimeError(f"Score {name} not found; available scores = {available_scores()}")
print("checkpoint loaded")
model.eval()
return model
|