Spaces:
Running
Running
from dataclasses import dataclass, field | |
from datasets import load_dataset, Dataset | |
from functools import cached_property | |
from tqdm.auto import tqdm | |
from typing import Any, Optional, Protocol, Iterable, Callable | |
from utils import ( | |
NUMERIC_IN_ZH, | |
extract_choice_ans, | |
extract_numeric, | |
get_answer, | |
is_equiv, | |
) | |
from evaluate import load | |
TextGenerationPipeline = Callable[[Iterable[str]], list[str]] | |
def fake_pipeline(prompts: Iterable[str]) -> list[str]: | |
return [prompt for prompt in tqdm(prompts)] | |
class Task: | |
dataset_name: str | tuple[str, str] = ("gsm8k", "main") | |
split: str = "test" | |
# metrics: list[str] = field(default_factory=list) | |
metric_name: str | tuple[str, str] = ("sustech/tlem", "gsm8k") | |
input_column: str = "question" | |
label_column: str = "answer" | |
prompt: Optional[Callable | str] = None | |
def name(self): | |
return ( | |
self.dataset_name | |
if isinstance(self.dataset_name, str) | |
else self.dataset_name[0] | |
) + f"-{self.split}" | |
def samples(self): | |
return self.dataset[self.input_column] | |
def dataset(self): | |
ds = load_dataset( | |
*self.dataset_name | |
if isinstance(self.dataset_name, tuple) | |
else self.dataset_name, | |
split=self.split, | |
) | |
if self.prompt is not None: | |
ds = ds.map( | |
lambda example: { | |
self.input_column: self.prompt.format( | |
input_column=example[self.input_column] | |
) | |
} | |
if isinstance(self.prompt, str) | |
else self.prompt(example), | |
) | |
return ds | |
def metric(self): | |
metric = ( | |
load(self.metric_name) | |
if isinstance(self.metric_name, str) | |
else load(*self.metric_name) | |
) | |
return metric | |
def run(self, pipeline: TextGenerationPipeline = fake_pipeline): | |
outputs = pipeline(self.samples) | |
return self.metric.compute( | |
responses=outputs, references=self.dataset[self.label_column] | |
) | |
class Metrics: | |
def gsm8k(responses: list[str], answers: list[str | int]): | |
scores = [] | |
for response, answer in zip(responses, answers): | |
pred = extract_numeric(response) | |
gold = extract_numeric(answer) if isinstance(answer, str) else str(answer) | |
scores.append(1.0 * (pred == gold)) | |
return scores | |
def MATH(responses: list[str], answers: list[str]): | |
scores = [] | |
for response, answer in zip(responses, answers): | |
indices = [pos for pos, char in enumerate(response) if char == "$"] | |
if len(indices) <= 2: | |
scores.append(0) | |
continue | |
else: | |
result = response[indices[-2] + 1 : indices[-1]] | |
gold = get_answer(answer) | |
scores.append(1.0 * is_equiv(result, gold)) | |
return scores | |
def math23k(responses: list[str], answers: list[str]): | |
scores = [] | |
for response, answer in zip(responses, answers): | |
pred = extract_numeric(response, pattern=NUMERIC_IN_ZH) | |
gold = extract_numeric(answer, pattern=NUMERIC_IN_ZH) | |
scores.append(1.0 * (pred == gold)) | |
return scores | |
def gsm8k_zh(responses: list[str], answers: list[str]): | |
scores = [] | |
for response, answer in zip(responses, answers): | |
pred = extract_numeric(response, pattern=NUMERIC_IN_ZH) | |
gold = extract_numeric(answer) | |
scores.append(1.0 * (pred == gold)) | |
return scores | |
def svamp(responses: list[float], answers: list[str]): | |
scores = [] | |
for response, answer in zip(responses, answers): | |
pred = extract_numeric(response, pattern=NUMERIC_IN_ZH) | |
gold = answer | |
scores.append(1.0 * (float(pred) == gold)) | |
return scores | |
def mmlu(responses, answers): | |
scores = [] | |
for response, answer in zip(responses, answers): | |
pred = extract_choice_ans(response) | |
gold = answer.lower() | |
scores.append(1.0 * (pred == gold)) | |
return scores | |