File size: 6,683 Bytes
8af54b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# %%

try:
    from ipytorch import logging
except Exception as e:
    import logging

from typing import Any, Optional, Protocol, Iterable, Callable

# %%

# %cd ../tlem

# %load_ext ipytorch
# %ls
from utils import (
    NUMERIC_IN_ZH,
    extract_choice_ans,
    extract_numeric,
    get_answer,
    is_equiv,
)


from dataclasses import dataclass, field
from datasets import load_dataset, Dataset
from functools import cached_property


TextGenerationPipeline = Callable[[Iterable[str]], list[str]]


from evaluate import EvaluationModule, Evaluator, evaluator, load


@dataclass
class Task:
    dataset_name: str = "gsm8k"
    dataset_params: dict = field(default_factory=dict)
    # metrics: list[str] = field(default_factory=list)
    metric_name: str | tuple[str, str] = "gsm8k"
    input_column: str = "question"
    label_column: str
    prompt: Optional[Callable | str] = None

    @cached_property
    def samples(self):
        return self.dataset[self.input_column]

    @cached_property
    def dataset(self):
        ds = load_dataset(self.dataset_name, **self.dataset_params)
        if self.prompt is not None:
            ds = ds.map(
                lambda example: {
                    self.input_column: self.prompt.format(
                        input_column=example[self.input_column]
                    )
                }
                if isinstance(self.prompt, str)
                else self.prompt(example),
            )

        return ds

    @cached_property
    def metric(self):
        metric = (
            load(self.metric_name)
            if isinstance(self.metric_name, str)
            else load(*self.metric_name)
        )
        return metric

    def run(self, pipeline: TextGenerationPipeline):
        outputs = pipeline(self.samples)
        return self.metric.compute(outputs, self.dataset[self.label_column])


class Metrics:
    def gsm8k(responses: list[str], answers: list[str | int]):
        scores = []
        for response, answer in zip(responses, answers):
            pred = extract_numeric(response)
            gold = extract_numeric(answer) if isinstance(answer, str) else str(answer)
            scores.append(1.0 * (pred == gold))
        return scores

    def MATH(responses: list[str], answers: list[str]):
        scores = []

        for response, answer in zip(responses, answers):
            indices = [pos for pos, char in enumerate(response) if char == "$"]
            if len(indices) <= 2:
                scores.append(0)
                continue
            else:
                result = response[indices[-2] + 1 : indices[-1]]
                gold = get_answer(answer)
                scores.append(1.0 * is_equiv(result, gold))

        return scores

    def math23k(responses: list[str], answers: list[str]):
        scores = []
        for response, answer in zip(responses, answers):
            pred = extract_numeric(response, pattern=NUMERIC_IN_ZH)
            gold = extract_numeric(answer, pattern=NUMERIC_IN_ZH)
            scores.append(1.0 * (pred == gold))
        return scores

    def gsm8k_zh(responses: list[str], answers: list[str]):
        scores = []
        for response, answer in zip(responses, answers):
            pred = extract_numeric(response, pattern=NUMERIC_IN_ZH)
            gold = extract_numeric(answer)
            scores.append(1.0 * (pred == gold))
        return scores

    def svamp(responses: list[float], answers: list[str]):
        scores = []
        for response, answer in zip(responses, answers):
            pred = extract_numeric(response, pattern=NUMERIC_IN_ZH)
            gold = answer
            scores.append(1.0 * (float(pred) == gold))
        return scores

    def mmlu(responses, answers):
        scores = []
        for response, answer in zip(responses, answers):
            pred = extract_choice_ans(response)
            gold = answer.lower()
            scores.append(1.0 * (pred == gold))
        return scores


import evaluate
import numpy as np

import datasets


# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
A simple measurement that returns the number of elements in dataset.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates number of elements in dataset
Args:
    data: list of elements.
Returns:
    element_count: number of elements in dataset,
Examples:
    >>> measure = evaluate.load("lvwerra/element_count")
    >>> measure.compute(["a", "b", "c")
    {"element_count": 3}
"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class ReasoningMetric(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        features = datasets.Features(
            {
                "responses": datasets.Value("string"),
                "references": datasets.Value("string"),
            }
        )

        if self.config_name == "svamp":
            features = datasets.Features(
                {
                    "responses": datasets.Value("string"),
                    "references": datasets.Value("float"),
                }
            )

        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.EvaluationModuleInfo(
            # This is the description that will appear on the modules page.
            # module_type="measurement",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=features,
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"],
        )

    def _compute(self, responses, references, verbose=False):
        results = {}
        scores = getattr(Metrics, self.config_name)(responses, references)
        acc = np.asarray(scores).mean()
        results = {
            "accuracy": acc,
            "scores": scores,
        }

        if verbose:
            results["references"] = references
            results["answers"] = responses
            # results["scores"] = scores

        return results