Spaces:
Running
Running
File size: 4,043 Bytes
8af54b8 a034e31 a6d7b1c 4c7982b be1543a 044ed98 8af54b8 be1543a 8af54b8 be1543a 8af54b8 33a6f85 8af54b8 a034e31 be1543a a034e31 8af54b8 e01a5f6 18cd4ae a6d7b1c be1543a a6d7b1c be1543a 33a6f85 be1543a 33a6f85 be1543a 33a6f85 be1543a 18cd4ae be1543a a6d7b1c be1543a 33a6f85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
# %%
try:
from ipytorch import logging
except Exception as e:
import logging
from typing import Any, Optional, Protocol, Iterable, Callable
from numpy.lib import extract
from tqdm.auto import tqdm
from evaluate.evaluation_suite import EvaluationSuite
import evaluate
import numpy as np
import datasets
import pandas as pd
from .tasks import *
from .utils import is_equiv
class ReasoningMetric(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# if self.config_name in ["cmmlu"]:
features = datasets.Features(
{
"responses": datasets.Value("string"),
# "responses": datasets.Sequence(datasets.Value("float")),
"references": datasets.Value("string"),
}
)
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.EvaluationModuleInfo(
# This is the description that will appear on the modules page.
# module_type="measurement",
description="",
citation="",
inputs_description="",
# This defines the format of each prediction and reference
features=features,
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"],
)
def _compute(self, responses, references, verbose=False):
extract_responses, extract_references = getattr(Metrics, self.config_name)(
responses, references
)
df = pd.DataFrame(
{
"responses": responses,
"references": references,
}
)
df["extract_responses"] = extract_responses
df["extract_references"] = extract_references
results = {
"Accuracy": (df["extract_references"] == df["extract_responses"])
.astype(int)
.mean(),
}
logging.info(results)
if verbose:
results["df"] = df
return results
gsm8k = Task(
dataset_name=("gsm8k", "main"),
metric_name=("sustech/tlem", "gsm8k"),
input_column="question",
label_column="answer",
)
class Suite(EvaluationSuite):
def run(
self,
model_or_pipeline: Any,
) -> dict[str, float]:
self.assert_suite_nonempty()
def run_tasks(tasks):
for task in (bar := tqdm(tasks, leave=False)):
bar.desc = f"complete {task.name}."
if task.name not in self.cached_result:
self.cached_result[task.name] = task.run(model_or_pipeline)
results = [self.cached_result[task.name] for task in tasks]
return pd.DataFrame(results).mean().to_dict()
if isinstance(self.suite, dict):
for category, tasks in (bar := tqdm(self.suite.items())):
bar.desc = f"complete {category}."
logging.warning(f"Combined results {category}: {run_tasks(tasks)}")
else:
logging.warning(f"Combined results: {run_tasks(self.suite)}")
return self.cached_result
def add(self, name):
self.load(name)
def load(self, name):
chat = False
match name:
case _ if "chat" in name:
chat = True
match name:
case _ if name.startswith("mmlu"):
suite = MMLU.suite(chat=chat)
case _ if name.startswith("cmmlu"):
suite = CMMLU.suite(chat=chat)
case "gsm8k":
suite = [gsm8k]
match name:
case _ if "test" in name:
suite = suite["Test"]
self.suite = suite
def __init__(self, name="tlem"):
super().__init__(name)
self.cached_result = {}
self.suite = []
|