Spaces:
Sleeping
Sleeping
Suresh Beekhani
commited on
Commit
·
5b26f53
1
Parent(s):
1cf406a
Your commit message
Browse files- requirements.txt +7 -8
- src/app.py +120 -87
requirements.txt
CHANGED
|
@@ -1,8 +1,7 @@
|
|
| 1 |
-
streamlit
|
| 2 |
-
langchain
|
| 3 |
-
langchain-community
|
| 4 |
-
langchain-core
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
groq
|
| 8 |
-
langchain-groq==0.0.1
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
langchain
|
| 3 |
+
langchain-community
|
| 4 |
+
langchain-core
|
| 5 |
+
mysql-connector-python
|
| 6 |
+
groq
|
| 7 |
+
langchain-groq
|
|
|
src/app.py
CHANGED
|
@@ -1,139 +1,172 @@
|
|
| 1 |
-
|
| 2 |
-
from
|
| 3 |
-
from langchain_core.
|
| 4 |
-
from langchain_core.
|
| 5 |
-
from
|
| 6 |
-
from
|
| 7 |
-
from
|
| 8 |
-
|
| 9 |
-
import
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
|
|
|
| 15 |
def get_sql_chain(db):
|
| 16 |
-
|
|
|
|
| 17 |
You are a data analyst at a company. You are interacting with a user who is asking you questions about the company's database.
|
| 18 |
Based on the table schema below, write a SQL query that would answer the user's question. Take the conversation history into account.
|
| 19 |
-
|
| 20 |
<SCHEMA>{schema}</SCHEMA>
|
| 21 |
-
|
| 22 |
Conversation History: {chat_history}
|
| 23 |
-
|
| 24 |
-
Write only the SQL query and nothing else. Do not wrap the SQL query in any other text, not even backticks.
|
| 25 |
-
|
| 26 |
-
For example:
|
| 27 |
-
Question: which 3 artists have the most tracks?
|
| 28 |
-
SQL Query: SELECT ArtistId, COUNT(*) as track_count FROM Track GROUP BY ArtistId ORDER BY track_count DESC LIMIT 3;
|
| 29 |
-
Question: Name 10 artists
|
| 30 |
-
SQL Query: SELECT Name FROM Artist LIMIT 10;
|
| 31 |
-
|
| 32 |
-
Your turn:
|
| 33 |
|
| 34 |
Question: {question}
|
| 35 |
SQL Query:
|
| 36 |
"""
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
# llm = ChatOpenAI(model="gpt-4-0125-preview")
|
| 41 |
-
llm = ChatGroq(model="mixtral-8x7b-32768", temperature=0)
|
| 42 |
-
|
| 43 |
-
def get_schema(_):
|
| 44 |
-
return db.get_table_info()
|
| 45 |
-
|
| 46 |
-
return (
|
| 47 |
-
RunnablePassthrough.assign(schema=get_schema)
|
| 48 |
-
| prompt
|
| 49 |
-
| llm
|
| 50 |
-
| StrOutputParser()
|
| 51 |
-
)
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
def get_response(user_query: str, db: SQLDatabase, chat_history: list):
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
| 59 |
<SCHEMA>{schema}</SCHEMA>
|
| 60 |
-
|
| 61 |
Conversation History: {chat_history}
|
| 62 |
SQL Query: <SQL>{query}</SQL>
|
| 63 |
User question: {question}
|
| 64 |
-
SQL Response: {response}
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
)
|
| 76 |
-
| prompt
|
| 77 |
-
| llm
|
| 78 |
-
| StrOutputParser()
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
return chain.invoke({
|
| 82 |
-
"question": user_query,
|
| 83 |
-
"chat_history": chat_history,
|
| 84 |
-
})
|
| 85 |
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
if "chat_history" not in st.session_state:
|
|
|
|
| 88 |
st.session_state.chat_history = [
|
| 89 |
-
|
| 90 |
]
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
st.set_page_config(page_title="Chat with MySQL", page_icon=":speech_balloon:")
|
| 95 |
|
|
|
|
| 96 |
st.title("Chat with MySQL")
|
| 97 |
|
|
|
|
| 98 |
with st.sidebar:
|
| 99 |
st.subheader("Settings")
|
| 100 |
-
st.write("
|
| 101 |
|
| 102 |
-
|
| 103 |
-
st.text_input("
|
| 104 |
-
st.text_input("
|
| 105 |
-
st.text_input("
|
| 106 |
-
st.text_input("
|
|
|
|
| 107 |
|
|
|
|
| 108 |
if st.button("Connect"):
|
| 109 |
with st.spinner("Connecting to database..."):
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
st.session_state
|
| 114 |
-
st.
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
for message in st.session_state.chat_history:
|
| 121 |
if isinstance(message, AIMessage):
|
|
|
|
| 122 |
with st.chat_message("AI"):
|
| 123 |
st.markdown(message.content)
|
| 124 |
elif isinstance(message, HumanMessage):
|
|
|
|
| 125 |
with st.chat_message("Human"):
|
| 126 |
st.markdown(message.content)
|
| 127 |
|
|
|
|
| 128 |
user_query = st.chat_input("Type a message...")
|
| 129 |
-
if user_query
|
|
|
|
| 130 |
st.session_state.chat_history.append(HumanMessage(content=user_query))
|
| 131 |
|
|
|
|
| 132 |
with st.chat_message("Human"):
|
| 133 |
st.markdown(user_query)
|
| 134 |
|
|
|
|
| 135 |
with st.chat_message("AI"):
|
| 136 |
response = get_response(user_query, st.session_state.db, st.session_state.chat_history)
|
| 137 |
st.markdown(response)
|
| 138 |
|
| 139 |
-
|
|
|
|
|
|
| 1 |
+
# Import necessary libraries and modules
|
| 2 |
+
from dotenv import load_dotenv # For loading environment variables from .env
|
| 3 |
+
from langchain_core.messages import AIMessage, HumanMessage # Message handling
|
| 4 |
+
from langchain_core.prompts import ChatPromptTemplate # Prompt templates for generating responses
|
| 5 |
+
from langchain_core.runnables import RunnablePassthrough # To chain operations
|
| 6 |
+
from langchain_community.utilities import SQLDatabase # SQL database utility for LangChain
|
| 7 |
+
from langchain_core.output_parsers import StrOutputParser # To parse outputs as strings
|
| 8 |
+
# OpenAI model for chat (if used)
|
| 9 |
+
from langchain_groq import ChatGroq # Groq model for chat (currently used)
|
| 10 |
+
import streamlit as st # Streamlit for building the web app
|
| 11 |
+
import os # To access environment variables
|
| 12 |
|
| 13 |
+
# Load environment variables from the .env file (like API keys, database credentials)
|
| 14 |
+
load_dotenv()
|
| 15 |
+
|
| 16 |
+
# Function to initialize a connection to a MySQL database
|
| 17 |
+
def init_database() -> SQLDatabase:
|
| 18 |
+
try:
|
| 19 |
+
# Load credentials from environment variables for better security
|
| 20 |
+
user = os.getenv("DB_USER", "root")
|
| 21 |
+
password = os.getenv("DB_PASSWORD", "admin")
|
| 22 |
+
host = os.getenv("DB_HOST", "localhost")
|
| 23 |
+
port = os.getenv("DB_PORT", "3306")
|
| 24 |
+
database = os.getenv("DB_NAME", "Chinook")
|
| 25 |
+
|
| 26 |
+
# Construct the database URI
|
| 27 |
+
db_uri = f"mysql+mysqlconnector://{user}:{password}@{host}:{port}/{database}"
|
| 28 |
+
|
| 29 |
+
# Initialize and return the SQLDatabase instance
|
| 30 |
+
return SQLDatabase.from_uri(db_uri)
|
| 31 |
+
except Exception as e:
|
| 32 |
+
st.error(f"Failed to connect to database: {e}")
|
| 33 |
+
return None
|
| 34 |
|
| 35 |
+
# Function to create a chain that generates SQL queries from user input and conversation history
|
| 36 |
def get_sql_chain(db):
|
| 37 |
+
# SQL prompt template
|
| 38 |
+
template = """
|
| 39 |
You are a data analyst at a company. You are interacting with a user who is asking you questions about the company's database.
|
| 40 |
Based on the table schema below, write a SQL query that would answer the user's question. Take the conversation history into account.
|
| 41 |
+
|
| 42 |
<SCHEMA>{schema}</SCHEMA>
|
|
|
|
| 43 |
Conversation History: {chat_history}
|
| 44 |
+
Write only the SQL query and nothing else.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
Question: {question}
|
| 47 |
SQL Query:
|
| 48 |
"""
|
| 49 |
|
| 50 |
+
# Create a prompt from the above template
|
| 51 |
+
prompt = ChatPromptTemplate.from_template(template)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
# Initialize Groq model for generating SQL queries (can switch to OpenAI if needed)
|
| 54 |
+
llm = ChatGroq(model="mixtral-8x7b-32768", temperature=0)
|
| 55 |
+
|
| 56 |
+
# Helper function to get schema info from the database
|
| 57 |
+
def get_schema(_):
|
| 58 |
+
return db.get_table_info()
|
| 59 |
+
|
| 60 |
+
# Chain of operations:
|
| 61 |
+
# 1. Assign schema information from the database
|
| 62 |
+
# 2. Use the AI model to generate a SQL query
|
| 63 |
+
# 3. Parse the result into a string
|
| 64 |
+
return (
|
| 65 |
+
RunnablePassthrough.assign(schema=get_schema) # Get schema info from the database
|
| 66 |
+
| prompt # Generate SQL query from the prompt template
|
| 67 |
+
| llm # Use Groq model to process the prompt and return a SQL query
|
| 68 |
+
| StrOutputParser() # Parse the result as a string
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# Function to generate a response in natural language based on the SQL query result
|
| 72 |
def get_response(user_query: str, db: SQLDatabase, chat_history: list):
|
| 73 |
+
# Generate the SQL query using the chain
|
| 74 |
+
sql_chain = get_sql_chain(db)
|
| 75 |
+
|
| 76 |
+
# Prompt template for natural language response based on SQL query and result
|
| 77 |
+
template = """
|
| 78 |
+
You are a data analyst at a company. Based on the table schema, SQL query, and response, write a natural language response.
|
| 79 |
<SCHEMA>{schema}</SCHEMA>
|
|
|
|
| 80 |
Conversation History: {chat_history}
|
| 81 |
SQL Query: <SQL>{query}</SQL>
|
| 82 |
User question: {question}
|
| 83 |
+
SQL Response: {response}
|
| 84 |
+
"""
|
| 85 |
+
|
| 86 |
+
# Create a natural language response prompt
|
| 87 |
+
prompt = ChatPromptTemplate.from_template(template)
|
| 88 |
+
|
| 89 |
+
# Initialize Groq model (alternative: OpenAI)
|
| 90 |
+
llm = ChatGroq(model="mixtral-8x7b-32768", temperature=0)
|
| 91 |
+
|
| 92 |
+
# Build a chain: generate SQL query, run it on the database, generate a natural language response
|
| 93 |
+
chain = (
|
| 94 |
+
RunnablePassthrough.assign(query=sql_chain).assign(
|
| 95 |
+
schema=lambda _: db.get_table_info(), # Get schema info
|
| 96 |
+
response=lambda vars: db.run(vars["query"]), # Run SQL query on the database
|
| 97 |
+
)
|
| 98 |
+
| prompt # Use prompt to generate a natural language response
|
| 99 |
+
| llm # Process prompt with Groq model
|
| 100 |
+
| StrOutputParser() # Parse the final result as a string
|
| 101 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
+
# Execute the chain and return the response
|
| 104 |
+
return chain.invoke({
|
| 105 |
+
"question": user_query,
|
| 106 |
+
"chat_history": chat_history,
|
| 107 |
+
})
|
| 108 |
+
|
| 109 |
+
# Initialize the Streamlit session
|
| 110 |
if "chat_history" not in st.session_state:
|
| 111 |
+
# Initialize chat history with a welcome message from AI
|
| 112 |
st.session_state.chat_history = [
|
| 113 |
+
AIMessage(content="Hello! I'm a SQL assistant. Ask me anything about your database."),
|
| 114 |
]
|
| 115 |
|
| 116 |
+
# Set up the Streamlit web page configuration
|
|
|
|
| 117 |
st.set_page_config(page_title="Chat with MySQL", page_icon=":speech_balloon:")
|
| 118 |
|
| 119 |
+
# Streamlit app title
|
| 120 |
st.title("Chat with MySQL")
|
| 121 |
|
| 122 |
+
# Sidebar for database connection settings
|
| 123 |
with st.sidebar:
|
| 124 |
st.subheader("Settings")
|
| 125 |
+
st.write("Connect to your database and start chatting.")
|
| 126 |
|
| 127 |
+
# Database connection input fields
|
| 128 |
+
host = st.text_input("Host", value=os.getenv("DB_HOST", "localhost"))
|
| 129 |
+
port = st.text_input("Port", value=os.getenv("DB_PORT", "3306"))
|
| 130 |
+
user = st.text_input("User", value=os.getenv("DB_USER", "root"))
|
| 131 |
+
password = st.text_input("Password", type="password", value=os.getenv("DB_PASSWORD", "admin"))
|
| 132 |
+
database = st.text_input("Database", value=os.getenv("DB_NAME", "Chinook"))
|
| 133 |
|
| 134 |
+
# Button to connect to the database
|
| 135 |
if st.button("Connect"):
|
| 136 |
with st.spinner("Connecting to database..."):
|
| 137 |
+
# Initialize the database connection and store in session state
|
| 138 |
+
db = init_database()
|
| 139 |
+
if db:
|
| 140 |
+
st.session_state.db = db
|
| 141 |
+
st.success("Connected to the database!")
|
| 142 |
+
else:
|
| 143 |
+
st.error("Connection failed. Please check your settings.")
|
| 144 |
+
|
| 145 |
+
# Display chat history
|
|
|
|
| 146 |
for message in st.session_state.chat_history:
|
| 147 |
if isinstance(message, AIMessage):
|
| 148 |
+
# Display AI message
|
| 149 |
with st.chat_message("AI"):
|
| 150 |
st.markdown(message.content)
|
| 151 |
elif isinstance(message, HumanMessage):
|
| 152 |
+
# Display human message
|
| 153 |
with st.chat_message("Human"):
|
| 154 |
st.markdown(message.content)
|
| 155 |
|
| 156 |
+
# Input field for user's message
|
| 157 |
user_query = st.chat_input("Type a message...")
|
| 158 |
+
if user_query and user_query.strip():
|
| 159 |
+
# Add user's query to the chat history
|
| 160 |
st.session_state.chat_history.append(HumanMessage(content=user_query))
|
| 161 |
|
| 162 |
+
# Display user's message in the chat
|
| 163 |
with st.chat_message("Human"):
|
| 164 |
st.markdown(user_query)
|
| 165 |
|
| 166 |
+
# Generate and display AI's response based on the query
|
| 167 |
with st.chat_message("AI"):
|
| 168 |
response = get_response(user_query, st.session_state.db, st.session_state.chat_history)
|
| 169 |
st.markdown(response)
|
| 170 |
|
| 171 |
+
# Add AI's response to the chat history
|
| 172 |
+
st.session_state.chat_history.append(AIMessage(content=response))
|