Spaces:
Sleeping
Sleeping
Suresh Beekhani
commited on
Commit
·
5b26f53
1
Parent(s):
1cf406a
Your commit message
Browse files- requirements.txt +7 -8
- src/app.py +120 -87
requirements.txt
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
-
streamlit
|
2 |
-
langchain
|
3 |
-
langchain-community
|
4 |
-
langchain-core
|
5 |
-
|
6 |
-
|
7 |
-
groq
|
8 |
-
langchain-groq==0.0.1
|
|
|
1 |
+
streamlit
|
2 |
+
langchain
|
3 |
+
langchain-community
|
4 |
+
langchain-core
|
5 |
+
mysql-connector-python
|
6 |
+
groq
|
7 |
+
langchain-groq
|
|
src/app.py
CHANGED
@@ -1,139 +1,172 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
-
from langchain_core.
|
4 |
-
from langchain_core.
|
5 |
-
from
|
6 |
-
from
|
7 |
-
from
|
8 |
-
|
9 |
-
import
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
15 |
def get_sql_chain(db):
|
16 |
-
|
|
|
17 |
You are a data analyst at a company. You are interacting with a user who is asking you questions about the company's database.
|
18 |
Based on the table schema below, write a SQL query that would answer the user's question. Take the conversation history into account.
|
19 |
-
|
20 |
<SCHEMA>{schema}</SCHEMA>
|
21 |
-
|
22 |
Conversation History: {chat_history}
|
23 |
-
|
24 |
-
Write only the SQL query and nothing else. Do not wrap the SQL query in any other text, not even backticks.
|
25 |
-
|
26 |
-
For example:
|
27 |
-
Question: which 3 artists have the most tracks?
|
28 |
-
SQL Query: SELECT ArtistId, COUNT(*) as track_count FROM Track GROUP BY ArtistId ORDER BY track_count DESC LIMIT 3;
|
29 |
-
Question: Name 10 artists
|
30 |
-
SQL Query: SELECT Name FROM Artist LIMIT 10;
|
31 |
-
|
32 |
-
Your turn:
|
33 |
|
34 |
Question: {question}
|
35 |
SQL Query:
|
36 |
"""
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
# llm = ChatOpenAI(model="gpt-4-0125-preview")
|
41 |
-
llm = ChatGroq(model="mixtral-8x7b-32768", temperature=0)
|
42 |
-
|
43 |
-
def get_schema(_):
|
44 |
-
return db.get_table_info()
|
45 |
-
|
46 |
-
return (
|
47 |
-
RunnablePassthrough.assign(schema=get_schema)
|
48 |
-
| prompt
|
49 |
-
| llm
|
50 |
-
| StrOutputParser()
|
51 |
-
)
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
def get_response(user_query: str, db: SQLDatabase, chat_history: list):
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
59 |
<SCHEMA>{schema}</SCHEMA>
|
60 |
-
|
61 |
Conversation History: {chat_history}
|
62 |
SQL Query: <SQL>{query}</SQL>
|
63 |
User question: {question}
|
64 |
-
SQL Response: {response}
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
)
|
76 |
-
| prompt
|
77 |
-
| llm
|
78 |
-
| StrOutputParser()
|
79 |
-
)
|
80 |
-
|
81 |
-
return chain.invoke({
|
82 |
-
"question": user_query,
|
83 |
-
"chat_history": chat_history,
|
84 |
-
})
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
if "chat_history" not in st.session_state:
|
|
|
88 |
st.session_state.chat_history = [
|
89 |
-
|
90 |
]
|
91 |
|
92 |
-
|
93 |
-
|
94 |
st.set_page_config(page_title="Chat with MySQL", page_icon=":speech_balloon:")
|
95 |
|
|
|
96 |
st.title("Chat with MySQL")
|
97 |
|
|
|
98 |
with st.sidebar:
|
99 |
st.subheader("Settings")
|
100 |
-
st.write("
|
101 |
|
102 |
-
|
103 |
-
st.text_input("
|
104 |
-
st.text_input("
|
105 |
-
st.text_input("
|
106 |
-
st.text_input("
|
|
|
107 |
|
|
|
108 |
if st.button("Connect"):
|
109 |
with st.spinner("Connecting to database..."):
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
st.session_state
|
114 |
-
st.
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
for message in st.session_state.chat_history:
|
121 |
if isinstance(message, AIMessage):
|
|
|
122 |
with st.chat_message("AI"):
|
123 |
st.markdown(message.content)
|
124 |
elif isinstance(message, HumanMessage):
|
|
|
125 |
with st.chat_message("Human"):
|
126 |
st.markdown(message.content)
|
127 |
|
|
|
128 |
user_query = st.chat_input("Type a message...")
|
129 |
-
if user_query
|
|
|
130 |
st.session_state.chat_history.append(HumanMessage(content=user_query))
|
131 |
|
|
|
132 |
with st.chat_message("Human"):
|
133 |
st.markdown(user_query)
|
134 |
|
|
|
135 |
with st.chat_message("AI"):
|
136 |
response = get_response(user_query, st.session_state.db, st.session_state.chat_history)
|
137 |
st.markdown(response)
|
138 |
|
139 |
-
|
|
|
|
1 |
+
# Import necessary libraries and modules
|
2 |
+
from dotenv import load_dotenv # For loading environment variables from .env
|
3 |
+
from langchain_core.messages import AIMessage, HumanMessage # Message handling
|
4 |
+
from langchain_core.prompts import ChatPromptTemplate # Prompt templates for generating responses
|
5 |
+
from langchain_core.runnables import RunnablePassthrough # To chain operations
|
6 |
+
from langchain_community.utilities import SQLDatabase # SQL database utility for LangChain
|
7 |
+
from langchain_core.output_parsers import StrOutputParser # To parse outputs as strings
|
8 |
+
# OpenAI model for chat (if used)
|
9 |
+
from langchain_groq import ChatGroq # Groq model for chat (currently used)
|
10 |
+
import streamlit as st # Streamlit for building the web app
|
11 |
+
import os # To access environment variables
|
12 |
|
13 |
+
# Load environment variables from the .env file (like API keys, database credentials)
|
14 |
+
load_dotenv()
|
15 |
+
|
16 |
+
# Function to initialize a connection to a MySQL database
|
17 |
+
def init_database() -> SQLDatabase:
|
18 |
+
try:
|
19 |
+
# Load credentials from environment variables for better security
|
20 |
+
user = os.getenv("DB_USER", "root")
|
21 |
+
password = os.getenv("DB_PASSWORD", "admin")
|
22 |
+
host = os.getenv("DB_HOST", "localhost")
|
23 |
+
port = os.getenv("DB_PORT", "3306")
|
24 |
+
database = os.getenv("DB_NAME", "Chinook")
|
25 |
+
|
26 |
+
# Construct the database URI
|
27 |
+
db_uri = f"mysql+mysqlconnector://{user}:{password}@{host}:{port}/{database}"
|
28 |
+
|
29 |
+
# Initialize and return the SQLDatabase instance
|
30 |
+
return SQLDatabase.from_uri(db_uri)
|
31 |
+
except Exception as e:
|
32 |
+
st.error(f"Failed to connect to database: {e}")
|
33 |
+
return None
|
34 |
|
35 |
+
# Function to create a chain that generates SQL queries from user input and conversation history
|
36 |
def get_sql_chain(db):
|
37 |
+
# SQL prompt template
|
38 |
+
template = """
|
39 |
You are a data analyst at a company. You are interacting with a user who is asking you questions about the company's database.
|
40 |
Based on the table schema below, write a SQL query that would answer the user's question. Take the conversation history into account.
|
41 |
+
|
42 |
<SCHEMA>{schema}</SCHEMA>
|
|
|
43 |
Conversation History: {chat_history}
|
44 |
+
Write only the SQL query and nothing else.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
Question: {question}
|
47 |
SQL Query:
|
48 |
"""
|
49 |
|
50 |
+
# Create a prompt from the above template
|
51 |
+
prompt = ChatPromptTemplate.from_template(template)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# Initialize Groq model for generating SQL queries (can switch to OpenAI if needed)
|
54 |
+
llm = ChatGroq(model="mixtral-8x7b-32768", temperature=0)
|
55 |
+
|
56 |
+
# Helper function to get schema info from the database
|
57 |
+
def get_schema(_):
|
58 |
+
return db.get_table_info()
|
59 |
+
|
60 |
+
# Chain of operations:
|
61 |
+
# 1. Assign schema information from the database
|
62 |
+
# 2. Use the AI model to generate a SQL query
|
63 |
+
# 3. Parse the result into a string
|
64 |
+
return (
|
65 |
+
RunnablePassthrough.assign(schema=get_schema) # Get schema info from the database
|
66 |
+
| prompt # Generate SQL query from the prompt template
|
67 |
+
| llm # Use Groq model to process the prompt and return a SQL query
|
68 |
+
| StrOutputParser() # Parse the result as a string
|
69 |
+
)
|
70 |
+
|
71 |
+
# Function to generate a response in natural language based on the SQL query result
|
72 |
def get_response(user_query: str, db: SQLDatabase, chat_history: list):
|
73 |
+
# Generate the SQL query using the chain
|
74 |
+
sql_chain = get_sql_chain(db)
|
75 |
+
|
76 |
+
# Prompt template for natural language response based on SQL query and result
|
77 |
+
template = """
|
78 |
+
You are a data analyst at a company. Based on the table schema, SQL query, and response, write a natural language response.
|
79 |
<SCHEMA>{schema}</SCHEMA>
|
|
|
80 |
Conversation History: {chat_history}
|
81 |
SQL Query: <SQL>{query}</SQL>
|
82 |
User question: {question}
|
83 |
+
SQL Response: {response}
|
84 |
+
"""
|
85 |
+
|
86 |
+
# Create a natural language response prompt
|
87 |
+
prompt = ChatPromptTemplate.from_template(template)
|
88 |
+
|
89 |
+
# Initialize Groq model (alternative: OpenAI)
|
90 |
+
llm = ChatGroq(model="mixtral-8x7b-32768", temperature=0)
|
91 |
+
|
92 |
+
# Build a chain: generate SQL query, run it on the database, generate a natural language response
|
93 |
+
chain = (
|
94 |
+
RunnablePassthrough.assign(query=sql_chain).assign(
|
95 |
+
schema=lambda _: db.get_table_info(), # Get schema info
|
96 |
+
response=lambda vars: db.run(vars["query"]), # Run SQL query on the database
|
97 |
+
)
|
98 |
+
| prompt # Use prompt to generate a natural language response
|
99 |
+
| llm # Process prompt with Groq model
|
100 |
+
| StrOutputParser() # Parse the final result as a string
|
101 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
# Execute the chain and return the response
|
104 |
+
return chain.invoke({
|
105 |
+
"question": user_query,
|
106 |
+
"chat_history": chat_history,
|
107 |
+
})
|
108 |
+
|
109 |
+
# Initialize the Streamlit session
|
110 |
if "chat_history" not in st.session_state:
|
111 |
+
# Initialize chat history with a welcome message from AI
|
112 |
st.session_state.chat_history = [
|
113 |
+
AIMessage(content="Hello! I'm a SQL assistant. Ask me anything about your database."),
|
114 |
]
|
115 |
|
116 |
+
# Set up the Streamlit web page configuration
|
|
|
117 |
st.set_page_config(page_title="Chat with MySQL", page_icon=":speech_balloon:")
|
118 |
|
119 |
+
# Streamlit app title
|
120 |
st.title("Chat with MySQL")
|
121 |
|
122 |
+
# Sidebar for database connection settings
|
123 |
with st.sidebar:
|
124 |
st.subheader("Settings")
|
125 |
+
st.write("Connect to your database and start chatting.")
|
126 |
|
127 |
+
# Database connection input fields
|
128 |
+
host = st.text_input("Host", value=os.getenv("DB_HOST", "localhost"))
|
129 |
+
port = st.text_input("Port", value=os.getenv("DB_PORT", "3306"))
|
130 |
+
user = st.text_input("User", value=os.getenv("DB_USER", "root"))
|
131 |
+
password = st.text_input("Password", type="password", value=os.getenv("DB_PASSWORD", "admin"))
|
132 |
+
database = st.text_input("Database", value=os.getenv("DB_NAME", "Chinook"))
|
133 |
|
134 |
+
# Button to connect to the database
|
135 |
if st.button("Connect"):
|
136 |
with st.spinner("Connecting to database..."):
|
137 |
+
# Initialize the database connection and store in session state
|
138 |
+
db = init_database()
|
139 |
+
if db:
|
140 |
+
st.session_state.db = db
|
141 |
+
st.success("Connected to the database!")
|
142 |
+
else:
|
143 |
+
st.error("Connection failed. Please check your settings.")
|
144 |
+
|
145 |
+
# Display chat history
|
|
|
146 |
for message in st.session_state.chat_history:
|
147 |
if isinstance(message, AIMessage):
|
148 |
+
# Display AI message
|
149 |
with st.chat_message("AI"):
|
150 |
st.markdown(message.content)
|
151 |
elif isinstance(message, HumanMessage):
|
152 |
+
# Display human message
|
153 |
with st.chat_message("Human"):
|
154 |
st.markdown(message.content)
|
155 |
|
156 |
+
# Input field for user's message
|
157 |
user_query = st.chat_input("Type a message...")
|
158 |
+
if user_query and user_query.strip():
|
159 |
+
# Add user's query to the chat history
|
160 |
st.session_state.chat_history.append(HumanMessage(content=user_query))
|
161 |
|
162 |
+
# Display user's message in the chat
|
163 |
with st.chat_message("Human"):
|
164 |
st.markdown(user_query)
|
165 |
|
166 |
+
# Generate and display AI's response based on the query
|
167 |
with st.chat_message("AI"):
|
168 |
response = get_response(user_query, st.session_state.db, st.session_state.chat_history)
|
169 |
st.markdown(response)
|
170 |
|
171 |
+
# Add AI's response to the chat history
|
172 |
+
st.session_state.chat_history.append(AIMessage(content=response))
|