Spaces:
Sleeping
Sleeping
File size: 5,986 Bytes
744eef2 0fc9dd5 744eef2 895e085 744eef2 895e085 744eef2 895e085 744eef2 895e085 744eef2 895e085 744eef2 0fc9dd5 744eef2 0fc9dd5 744eef2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import gradio as gr
import pandas as pd
from transformers import pipeline
from huggingface_hub import InferenceClient
import os
import random
import logging
import openai # OpenAI API๋ฅผ ์ฌ์ฉํ๊ธฐ ์ํด ์ถ๊ฐ
# ๋ก๊น
์ค์
logging.basicConfig(filename='language_model_playground.log', level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s')
# ๋ชจ๋ธ ๋ชฉ๋ก
MODELS = {
"Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta",
"DeepSeek Coder V2": "deepseek-ai/DeepSeek-Coder-V2-Instruct",
"Meta Llama 3.1 8B": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"Meta-Llama 3.1 70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"Microsoft": "microsoft/Phi-3-mini-4k-instruct",
"Mixtral 8x7B": "mistralai/Mistral-7B-Instruct-v0.3",
"Mixtral Nous-Hermes": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"Cohere Command R+": "CohereForAI/c4ai-command-r-plus",
"Aya-23-35B": "CohereForAI/aya-23-35B",
"GPT-4o Mini": "gpt-4o-mini" # GPT-4o Mini ๋ชจ๋ธ ์ถ๊ฐ
}
# HuggingFace ํ ํฐ ์ค์
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError("HF_TOKEN ํ๊ฒฝ ๋ณ์๊ฐ ์ค์ ๋์ง ์์์ต๋๋ค.")
# OpenAI API ํด๋ผ์ด์ธํธ ์ค์
openai.api_key = os.getenv("OPENAI_API_KEY")
def call_hf_api(prompt, reference_text, max_tokens, temperature, top_p, model):
if model == "gpt-4o-mini":
return call_openai_api(prompt, max_tokens, temperature, top_p)
client = InferenceClient(model=model, token=hf_token)
combined_prompt = f"{prompt}\n\n์ฐธ๊ณ ํ
์คํธ:\n{reference_text}"
random_seed = random.randint(0, 1000000)
try:
response = client.text_generation(
combined_prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
seed=random_seed
)
return response
except Exception as e:
logging.error(f"HuggingFace API ํธ์ถ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}")
return f"์๋ต ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}. ๋์ค์ ๋ค์ ์๋ํด ์ฃผ์ธ์."
def call_openai_api(prompt, max_tokens, temperature, top_p):
try:
response = openai.ChatCompletion.create(
model="gpt-4o-mini",
messages=[
{"role": "user", "content": prompt},
],
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
return response.choices[0].message['content']
except Exception as e:
logging.error(f"OpenAI API ํธ์ถ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}")
return f"OpenAI ์๋ต ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}. ๋์ค์ ๋ค์ ์๋ํด ์ฃผ์ธ์."
def generate_response(prompt, reference_text, max_tokens, temperature, top_p, model):
response = call_hf_api(prompt, reference_text, max_tokens, temperature, top_p, MODELS[model])
response_html = f"""
<h3>์์ฑ๋ ์๋ต:</h3>
<div style='max-height: 500px; overflow-y: auto; white-space: pre-wrap; word-wrap: break-word;'>
{response}
</div>
"""
return response_html
# ๋ฆฌ๋ทฐ ํ์ผ ์ฒ๋ฆฌ ํจ์
def process_reviews(file):
df = pd.read_excel(file.name)
if 'review' not in df.columns:
return "๋ฆฌ๋ทฐ ํ์ผ์ 'review' ์ด์ด ์์ต๋๋ค. ์ฌ๋ฐ๋ฅธ ํ์ผ์ ์
๋ก๋ํ์ธ์."
sentiment_analyzer = pipeline("sentiment-analysis")
reviews = df['review'].tolist()
# ๊ฐ์ฑ ๋ถ์ ์ํ
sentiments = sentiment_analyzer(reviews)
# ๊ธ์ ๋ฐ ๋ถ์ ๋ฆฌ๋ทฐ ํํฐ๋ง
positive_reviews = [r['review'] for r, s in zip(reviews, sentiments) if s['label'] == 'POSITIVE'][:10]
negative_reviews = [r['review'] for r, s in zip(reviews, sentiments) if s['label'] == 'NEGATIVE'][:10]
# ๋ถ์ ๊ฒฐ๊ณผ ์์ฝ
total_reviews = len(reviews)
positive_count = len([s for s in sentiments if s['label'] == 'POSITIVE'])
negative_count = len([s for s in sentiments if s['label'] == 'NEGATIVE'])
analysis_summary = f"์ด ๋ฆฌ๋ทฐ ์: {total_reviews}, ๊ธ์ ๋ฆฌ๋ทฐ ์: {positive_count}, ๋ถ์ ๋ฆฌ๋ทฐ ์: {negative_count}"
return "\n".join(positive_reviews), "\n".join(negative_reviews), analysis_summary
# Gradio ์ธํฐํ์ด์ค ์ค์
with gr.Blocks() as demo:
gr.Markdown("## ์ธ์ด ๋ชจ๋ธ ํ๋กฌํํธ ํ๋ ์ด๊ทธ๋ผ์ด๋")
with gr.Column():
model_radio = gr.Radio(choices=list(MODELS.keys()), value="Zephyr 7B Beta", label="์ธ์ด ๋ชจ๋ธ ์ ํ")
prompt_input = gr.Textbox(label="ํ๋กฌํํธ ์
๋ ฅ", lines=5)
reference_text_input = gr.Textbox(label="์ฐธ๊ณ ํ
์คํธ ์
๋ ฅ", lines=5)
with gr.Row():
max_tokens_slider = gr.Slider(minimum=0, maximum=5000, value=2000, step=100, label="์ต๋ ํ ํฐ ์")
temperature_slider = gr.Slider(minimum=0, maximum=1, value=0.75, step=0.05, label="์จ๋")
top_p_slider = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="Top P")
generate_button = gr.Button("์๋ต ์์ฑ")
response_output = gr.HTML(label="์์ฑ๋ ์๋ต")
# ๋ฆฌ๋ทฐ ํ์ผ ์
๋ก๋ ๋ฉ๋ด ์ถ๊ฐ
file_input = gr.File(label="๋ฆฌ๋ทฐ ์์
ํ์ผ ์
๋ก๋")
positive_reviews_output = gr.Textbox(label="๋ํ ๊ธ์ ๋ฆฌ๋ทฐ 10๊ฐ", lines=10, interactive=False)
negative_reviews_output = gr.Textbox(label="๋ํ ๋ถ์ ๋ฆฌ๋ทฐ 10๊ฐ", lines=10, interactive=False)
analysis_output = gr.Textbox(label="๋ถ์ ๊ฒฐ๊ณผ", interactive=False)
# ๋ฆฌ๋ทฐ ํ์ผ ์ฒ๋ฆฌ ๋ฒํผ
file_input.change(
process_reviews,
inputs=file_input,
outputs=[positive_reviews_output, negative_reviews_output, analysis_output]
)
# ๋ฒํผ ํด๋ฆญ ์ ์๋ต ์์ฑ
generate_button.click(
generate_response,
inputs=[prompt_input, reference_text_input, max_tokens_slider, temperature_slider, top_p_slider, model_radio],
outputs=response_output
)
# ์ธํฐํ์ด์ค ์คํ
demo.launch(share=True) |