|
import threading
|
|
from typing import Any, Optional, List
|
|
import insightface
|
|
import numpy
|
|
|
|
import roop.globals
|
|
from roop.typing import Frame, Face
|
|
|
|
FACE_ANALYSER = None
|
|
THREAD_LOCK = threading.Lock()
|
|
|
|
|
|
def get_face_analyser() -> Any:
|
|
global FACE_ANALYSER
|
|
|
|
with THREAD_LOCK:
|
|
if FACE_ANALYSER is None:
|
|
FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=roop.globals.execution_providers)
|
|
FACE_ANALYSER.prepare(ctx_id=0)
|
|
return FACE_ANALYSER
|
|
|
|
|
|
def clear_face_analyser() -> Any:
|
|
global FACE_ANALYSER
|
|
|
|
FACE_ANALYSER = None
|
|
|
|
|
|
def get_one_face(frame: Frame, position: int = 0) -> Optional[Face]:
|
|
many_faces = get_many_faces(frame)
|
|
if many_faces:
|
|
try:
|
|
return many_faces[position]
|
|
except IndexError:
|
|
return many_faces[-1]
|
|
return None
|
|
|
|
|
|
def get_many_faces(frame: Frame) -> Optional[List[Face]]:
|
|
try:
|
|
return get_face_analyser().get(frame)
|
|
except ValueError:
|
|
return None
|
|
|
|
|
|
def find_similar_face(frame: Frame, reference_face: Face) -> Optional[Face]:
|
|
many_faces = get_many_faces(frame)
|
|
if many_faces:
|
|
for face in many_faces:
|
|
if hasattr(face, 'normed_embedding') and hasattr(reference_face, 'normed_embedding'):
|
|
distance = numpy.sum(numpy.square(face.normed_embedding - reference_face.normed_embedding))
|
|
if distance < roop.globals.similar_face_distance:
|
|
return face
|
|
return None
|
|
|