Spaces:
Runtime error
Runtime error
| """ | |
| building-segmentation | |
| Proof of concept showing effectiveness of a fine tuned instance segmentation model for deteting buildings. | |
| """ | |
| import os | |
| import cv2 | |
| os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'") | |
| from transformers import DetrFeatureExtractor, DetrForSegmentation | |
| from PIL import Image | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| import torchvision | |
| import detectron2 | |
| # import some common detectron2 utilities | |
| import itertools | |
| import seaborn as sns | |
| from detectron2 import model_zoo | |
| from detectron2.engine import DefaultPredictor | |
| from detectron2.config import get_cfg | |
| from detectron2.utils.visualizer import Visualizer | |
| from detectron2.data import MetadataCatalog, DatasetCatalog | |
| cfg = get_cfg() | |
| cfg.MODEL.DEVICE='cpu' | |
| cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 | |
| cfg.MODEL.WEIGHTS = "model_weights/chatswood_buildings_poc.pth" | |
| def segment_buildings(input_image): | |
| im = cv2.imread(input_image.name) | |
| outputs = predictor(im) | |
| v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2) | |
| out = v.draw_instance_predictions(outputs["instances"].to("cpu")) | |
| return Image.fromarray(np.uint8(out.get_image())).convert('RGB') | |
| # gradio components -inputs | |
| gr_image_input = gr.inputs.Image(type="file") | |
| """ | |
| gr_slider_confidence = gr.inputs.Slider(0,1,.1,.7, | |
| label='Set confidence threshold % for masks') | |
| """ | |
| # gradio outputs | |
| gr_image_output = gr.outputs.Image(type="pil") | |
| title = "Building Segmentation" | |
| description = "An instance segmentation demo for identifying boundaries of buildings in aerial images using DETR (End-to-End Object Detection) model with MaskRCNN-101 backbone" | |
| # Create user interface and launch | |
| gr.Interface(predict_building_mask, | |
| inputs = gr_image_input, | |
| outputs = gr_image_output, | |
| title = title, | |
| enable_queue = True, | |
| description = description).launch() | |