File size: 7,294 Bytes
95b1a30
 
 
 
 
 
f043377
 
aac5b7a
f043377
95b1a30
 
2153359
95b1a30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
769e874
 
2153359
a41b15f
95b1a30
 
 
 
 
d647cdd
 
 
 
 
aca52b5
d647cdd
 
 
 
aca52b5
d647cdd
 
 
 
 
 
 
 
 
8d7a457
 
951c776
 
 
 
95b1a30
ec949f6
 
 
 
55190ff
ec949f6
 
55190ff
ec949f6
 
f043377
aca52b5
f043377
55190ff
83e23a7
95b1a30
 
 
 
 
 
 
dd0accd
95b1a30
 
951c776
7bd6aff
95b1a30
 
f043377
95b1a30
 
aca52b5
2153359
 
 
 
 
 
 
3656318
 
aca52b5
e46317c
 
2153359
 
 
 
5047bba
2153359
 
dd0accd
b6890ff
 
838042f
e46317c
951c776
aca52b5
95b1a30
3656318
95b1a30
769e874
 
 
 
 
 
 
 
 
 
 
 
 
3656318
95b1a30
 
 
 
f043377
95b1a30
 
 
838042f
95b1a30
838042f
130150b
95b1a30
f043377
95b1a30
 
 
 
 
 
 
dd0accd
95b1a30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a41b15f
95b1a30
 
 
 
 
 
 
 
 
a41b15f
95b1a30
 
 
 
aca52b5
 
ab40352
838042f
95b1a30
 
 
 
 
 
 
 
 
dd0accd
 
95b1a30
 
aca52b5
 
95b1a30
 
 
b6890ff
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

from typing import Tuple

import requests
import random
import numpy as np
import gradio as gr
import spaces
import os
import torch
from PIL import Image
from diffusers import FluxInpaintPipeline
from diffusers import FluxImg2ImgPipeline

MAX_SEED = np.iinfo(np.int32).max
IMAGE_SIZE = 1024
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"


def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
    image = image.convert("RGBA")
    data = image.getdata()
    new_data = []
    for item in data:
        avg = sum(item[:3]) / 3
        if avg < threshold:
            new_data.append((0, 0, 0, 0))
        else:
            new_data.append(item)

    image.putdata(new_data)
    return image


#pipe = FluxInpaintPipeline.from_pretrained(
   # "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
pipe2 = FluxImg2ImgPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(DEVICE)

def resize_image_dimensions(
    original_resolution_wh: Tuple[int, int],
    maximum_dimension: int = IMAGE_SIZE
) -> Tuple[int, int]:
   # width, height = original_resolution_wh
    w, h = original_resolution_wh
    w_original, h_original = w, h
 
    if w > h:
         aspect_ratiow = h / w
         w = IMAGE_SIZE
         h = IMAGE_SIZE * aspect_ratiow 
        
    if h > w:
         aspect_ratioh = w / h
         w = IMAGE_SIZE * aspect_ratioh
         h = IMAGE_SIZE 
        
    if h == w:
         w = IMAGE_SIZE
         h = IMAGE_SIZE   
    
    #was_resized = False

    w = w - w % 8
    h = h - h % 8
     #if width <= maximum_dimension and height <= maximum_dimension:
     #    width = width - (width % 32)
      #   height = height - (height % 32)
      #   return width, height

    # if width > height:
    #     scaling_factor = maximum_dimension / width
    # else:
    #     scaling_factor = maximum_dimension / height

    # new_width = int(width * scaling_factor)
    # new_height = int(height * scaling_factor)

    # new_width = new_width - (new_width % 32)
    # new_height = new_height - (new_height % 32)

    return int(w), int(h)


@spaces.GPU(duration=80)
def process(
    input_image_editor: dict,
    input_text: str,
    seed_slicer: int,
    randomize_seed_checkbox: bool,
    strength_slider: float,
    num_inference_steps_slider: int,
    num_influence: float,
    progress=gr.Progress(track_tqdm=True)
):
   
    input_text = "A military COR2 "+input_text
    image = input_image_editor['background']
    mask = input_image_editor['layers'][0]

    if not image:
        gr.Info("Please upload an image.")
        return None# , None
        
    width, height = resize_image_dimensions(original_resolution_wh=image.size)
    resized_image = image.resize((width, height), Image.LANCZOS)
    if randomize_seed_checkbox:
       seed_slicer = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed_slicer)
 
    # if not mask:
       # gr.Info("Please draw a mask on the image.")
    
    pipe2.load_lora_weights("SIGMitch/KIT")
    result = pipe2(
        prompt=input_text,
        image=resized_image,
        width=width,
        height=height,
        num_images_per_prompt =1,
        strength=strength_slider,
        generator=generator,
        joint_attention_kwargs={"scale": num_influence},
        num_inference_steps=num_inference_steps_slider,
        guidance_scale=3.5,
        )
    print('INFERENCE DONE')
    #return result.images[0].resize((image.size), Image.LANCZOS), result.images[1].resize((image.size), Image.LANCZOS)
    return result.images[0]# , None #result.images[1]

     #resized_mask = mask.resize((width, height), Image.LANCZOS)

   #pipe.load_lora_weights("SIGMitch/KIT")
    #result = pipe(
     #   prompt=input_text,
     #   image=resized_image,
     #   mask_image=resized_mask,
     #   width=width,
     #   height=height,
     #   strength=strength_slider,
     #   generator=generator,
     #   joint_attention_kwargs={"scale": 1.2},
     #   num_inference_steps=num_inference_steps_slider
    #).images[0]
    #print('INFERENCE DONE')
    # return result, resized_mask


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            input_image_editor_component = gr.ImageEditor(
                label='Image',
                type='pil',
                sources=["upload"],
                image_mode='RGB',
                layers=False
            )

            with gr.Row():
                input_text_component = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
                lorasteps = gr.Slider(label="Influence", minimum=0, maximum=2, step=0.1, value=1)
                submit_button_component = gr.Button(
                    value='Submit', variant='primary', scale=0)

            with gr.Accordion("Advanced Settings", open=False):
                seed_slicer_component = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=42,
                )

                randomize_seed_checkbox_component = gr.Checkbox(
                    label="Randomize seed", value=True)

                with gr.Row():
                    strength_slider_component = gr.Slider(
                        label="Strength",
                        info="Indicates extent to transform the reference `image`. "
                             "Must be between 0 and 1. `image` is used as a starting "
                             "point and more noise is added the higher the `strength`.",
                        minimum=0,
                        maximum=1,
                        step=0.01,
                        value=0.8,
                    )

                    num_inference_steps_slider_component = gr.Slider(
                        label="Number of inference steps",
                        info="The number of denoising steps. More denoising steps "
                             "usually lead to a higher quality image at the",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=28,
                    )
        with gr.Column():
            output_image_component = gr.Image(
                type='pil', image_mode='RGB', label='Generated image', format="png")
            # output_image_component2 = gr.Image(
            #     type='pil', image_mode='RGB', label='Generated image', format="png")



    submit_button_component.click(
        fn=process,
        inputs=[
            input_image_editor_component,
            input_text_component,
            seed_slicer_component,
            randomize_seed_checkbox_component,
            strength_slider_component,
            num_inference_steps_slider_component,
            lorasteps
        ],
        outputs=[
            output_image_component# ,
            # output_image_component2
        ]
    )

# demo.launch(auth=("user", os.getenv('Login')),share=True, debug=False, show_error=True)
demo.launch(share=True, debug=False, show_error=True)