Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import numpy as np | |
def resize_size(image, size=720): | |
h, w, c = np.shape(image) | |
if min(h, w) > size: | |
if h > w: | |
h, w = int(size * h / w), size | |
else: | |
h, w = size, int(size * w / h) | |
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA) | |
return image | |
def padTo16x(image): | |
h, w, c = np.shape(image) | |
if h % 16 == 0 and w % 16 == 0: | |
return image, h, w | |
nh, nw = (h // 16 + 1) * 16, (w // 16 + 1) * 16 | |
img_new = np.ones((nh, nw, 3), np.uint8) * 255 | |
img_new[:h, :w, :] = image | |
return img_new, h, w | |
def get_f5p(landmarks, np_img): | |
eye_left = find_pupil(landmarks[36:41], np_img) | |
eye_right = find_pupil(landmarks[42:47], np_img) | |
if eye_left is None or eye_right is None: | |
print('cannot find 5 points with find_puil, used mean instead.!') | |
eye_left = landmarks[36:41].mean(axis=0) | |
eye_right = landmarks[42:47].mean(axis=0) | |
nose = landmarks[30] | |
mouth_left = landmarks[48] | |
mouth_right = landmarks[54] | |
f5p = [[eye_left[0], eye_left[1]], [eye_right[0], eye_right[1]], | |
[nose[0], nose[1]], [mouth_left[0], mouth_left[1]], | |
[mouth_right[0], mouth_right[1]]] | |
return f5p | |
def find_pupil(landmarks, np_img): | |
h, w, _ = np_img.shape | |
xmax = int(landmarks[:, 0].max()) | |
xmin = int(landmarks[:, 0].min()) | |
ymax = int(landmarks[:, 1].max()) | |
ymin = int(landmarks[:, 1].min()) | |
if ymin >= ymax or xmin >= xmax or ymin < 0 or xmin < 0 or ymax > h or xmax > w: | |
return None | |
eye_img_bgr = np_img[ymin:ymax, xmin:xmax, :] | |
eye_img = cv2.cvtColor(eye_img_bgr, cv2.COLOR_BGR2GRAY) | |
eye_img = cv2.equalizeHist(eye_img) | |
n_marks = landmarks - np.array([xmin, ymin]).reshape([1, 2]) | |
eye_mask = cv2.fillConvexPoly( | |
np.zeros_like(eye_img), n_marks.astype(np.int32), 1) | |
ret, thresh = cv2.threshold(eye_img, 100, 255, | |
cv2.THRESH_BINARY | cv2.THRESH_OTSU) | |
thresh = (1 - thresh / 255.) * eye_mask | |
cnt = 0 | |
xm = [] | |
ym = [] | |
for i in range(thresh.shape[0]): | |
for j in range(thresh.shape[1]): | |
if thresh[i, j] > 0.5: | |
xm.append(j) | |
ym.append(i) | |
cnt += 1 | |
if cnt != 0: | |
xm.sort() | |
ym.sort() | |
xm = xm[cnt // 2] | |
ym = ym[cnt // 2] | |
else: | |
xm = thresh.shape[1] / 2 | |
ym = thresh.shape[0] / 2 | |
return xm + xmin, ym + ymin | |
def all_file(file_dir): | |
L = [] | |
for root, dirs, files in os.walk(file_dir): | |
for file in files: | |
extend = os.path.splitext(file)[1] | |
if extend == '.png' or extend == '.jpg' or extend == '.jpeg': | |
L.append(os.path.join(root, file)) | |
return L | |
def initialize_mask(box_width): | |
h, w = [box_width, box_width] | |
mask = np.zeros((h, w), np.uint8) | |
center = (int(w / 2), int(h / 2)) | |
axes = (int(w * 0.4), int(h * 0.49)) | |
mask = cv2.ellipse(img=mask, center=center, axes=axes, angle=0, startAngle=0, endAngle=360, color=(1), | |
thickness=-1) | |
mask = cv2.distanceTransform(mask, cv2.DIST_L2, 3) | |
maxn = max(w, h) * 0.15 | |
mask[(mask < 255) & (mask > 0)] = mask[(mask < 255) & (mask > 0)] / maxn | |
mask = np.clip(mask, 0, 1) | |
return mask.astype(float) | |