Spaces:
Sleeping
Sleeping
dummy _compute() output
Browse files- ref-metric.py +146 -119
ref-metric.py
CHANGED
@@ -99,126 +99,153 @@ class UserFriendlyMetrics(evaluate.Metric):
|
|
99 |
):
|
100 |
"""Returns the scores"""
|
101 |
# TODO: Compute the different scores of the module
|
102 |
-
return
|
103 |
-
payload, max_iou, filters, recognition_thresholds, debug
|
104 |
-
)
|
105 |
# return calculate(predictions, references, max_iou)
|
106 |
|
107 |
-
def
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
"
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
},
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
}
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
results["per_sequence"].items(),
|
201 |
-
key=lambda x: next(iter(x[1].values()), {}).get("all", {}).get("f1", 0),
|
202 |
-
reverse=True, # Set to True for descending order
|
203 |
-
)
|
204 |
-
|
205 |
-
for sequence_name, sequence_data in sorted_sequences:
|
206 |
-
for seq_key, seq_metrics in sequence_data.items():
|
207 |
-
for metric, value in seq_metrics["all"].items():
|
208 |
-
log_key = (
|
209 |
-
f"{wandb_section}/per_sequence/{sequence_name}/{seq_key}/{metric}"
|
210 |
-
if wandb_section
|
211 |
-
else f"per_sequence/{sequence_name}/{seq_key}/{metric}"
|
212 |
-
)
|
213 |
-
run.log({log_key: value})
|
214 |
-
if debug:
|
215 |
-
print(f" {log_key} = {value}")
|
216 |
-
print("----------------------------------------------------")
|
217 |
-
|
218 |
-
if debug:
|
219 |
-
print("\nDebug Mode: Logging Summary and History")
|
220 |
-
print(f"Results Summary:\n{results}")
|
221 |
-
print(f"WandB Settings:\n{run.settings}")
|
222 |
-
print("All metrics have been logged.")
|
223 |
-
|
224 |
-
run.finish()
|
|
|
99 |
):
|
100 |
"""Returns the scores"""
|
101 |
# TODO: Compute the different scores of the module
|
102 |
+
return dummy_values()
|
|
|
|
|
103 |
# return calculate(predictions, references, max_iou)
|
104 |
|
105 |
+
def dummy_values():
|
106 |
+
return {
|
107 |
+
"model_1": {
|
108 |
+
"overall": {
|
109 |
+
"all": {
|
110 |
+
"tp": 50,
|
111 |
+
"fp": 20,
|
112 |
+
"fn": 10,
|
113 |
+
"precision": 0.71,
|
114 |
+
"recall": 0.83,
|
115 |
+
"f1": 0.76
|
116 |
+
},
|
117 |
+
"small": {
|
118 |
+
"tp": 15,
|
119 |
+
"fp": 5,
|
120 |
+
"fn": 2,
|
121 |
+
"precision": 0.75,
|
122 |
+
"recall": 0.88,
|
123 |
+
"f1": 0.81
|
124 |
+
},
|
125 |
+
"medium": {
|
126 |
+
"tp": 25,
|
127 |
+
"fp": 10,
|
128 |
+
"fn": 5,
|
129 |
+
"precision": 0.71,
|
130 |
+
"recall": 0.83,
|
131 |
+
"f1": 0.76
|
132 |
+
},
|
133 |
+
"large": {
|
134 |
+
"tp": 10,
|
135 |
+
"fp": 5,
|
136 |
+
"fn": 3,
|
137 |
+
"precision": 0.67,
|
138 |
+
"recall": 0.77,
|
139 |
+
"f1": 0.71
|
140 |
+
}
|
141 |
+
},
|
142 |
+
"per_sequence": {
|
143 |
+
"sequence_1": {
|
144 |
+
"all": {
|
145 |
+
"tp": 30,
|
146 |
+
"fp": 15,
|
147 |
+
"fn": 7,
|
148 |
+
"precision": 0.67,
|
149 |
+
"recall": 0.81,
|
150 |
+
"f1": 0.73
|
151 |
+
},
|
152 |
+
"small": {
|
153 |
+
"tp": 10,
|
154 |
+
"fp": 3,
|
155 |
+
"fn": 1,
|
156 |
+
"precision": 0.77,
|
157 |
+
"recall": 0.91,
|
158 |
+
"f1": 0.83
|
159 |
+
},
|
160 |
+
"medium": {
|
161 |
+
"tp": 15,
|
162 |
+
"fp": 7,
|
163 |
+
"fn": 2,
|
164 |
+
"precision": 0.68,
|
165 |
+
"recall": 0.88,
|
166 |
+
"f1": 0.77
|
167 |
+
},
|
168 |
+
"large": {
|
169 |
+
"tp": 5,
|
170 |
+
"fp": 2,
|
171 |
+
"fn": 1,
|
172 |
+
"precision": 0.71,
|
173 |
+
"recall": 0.83,
|
174 |
+
"f1": 0.76
|
175 |
+
}
|
176 |
+
}
|
177 |
+
}
|
178 |
},
|
179 |
+
"model_2": {
|
180 |
+
"overall": {
|
181 |
+
"all": {
|
182 |
+
"tp": 60,
|
183 |
+
"fp": 25,
|
184 |
+
"fn": 15,
|
185 |
+
"precision": 0.71,
|
186 |
+
"recall": 0.80,
|
187 |
+
"f1": 0.75
|
188 |
+
},
|
189 |
+
"small": {
|
190 |
+
"tp": 20,
|
191 |
+
"fp": 6,
|
192 |
+
"fn": 3,
|
193 |
+
"precision": 0.77,
|
194 |
+
"recall": 0.87,
|
195 |
+
"f1": 0.82
|
196 |
+
},
|
197 |
+
"medium": {
|
198 |
+
"tp": 30,
|
199 |
+
"fp": 12,
|
200 |
+
"fn": 5,
|
201 |
+
"precision": 0.71,
|
202 |
+
"recall": 0.86,
|
203 |
+
"f1": 0.78
|
204 |
+
},
|
205 |
+
"large": {
|
206 |
+
"tp": 10,
|
207 |
+
"fp": 7,
|
208 |
+
"fn": 5,
|
209 |
+
"precision": 0.59,
|
210 |
+
"recall": 0.67,
|
211 |
+
"f1": 0.63
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"per_sequence": {
|
215 |
+
"sequence_1": {
|
216 |
+
"all": {
|
217 |
+
"tp": 40,
|
218 |
+
"fp": 18,
|
219 |
+
"fn": 8,
|
220 |
+
"precision": 0.69,
|
221 |
+
"recall": 0.83,
|
222 |
+
"f1": 0.75
|
223 |
+
},
|
224 |
+
"small": {
|
225 |
+
"tp": 12,
|
226 |
+
"fp": 4,
|
227 |
+
"fn": 2,
|
228 |
+
"precision": 0.75,
|
229 |
+
"recall": 0.86,
|
230 |
+
"f1": 0.80
|
231 |
+
},
|
232 |
+
"medium": {
|
233 |
+
"tp": 20,
|
234 |
+
"fp": 8,
|
235 |
+
"fn": 3,
|
236 |
+
"precision": 0.71,
|
237 |
+
"recall": 0.87,
|
238 |
+
"f1": 0.78
|
239 |
+
},
|
240 |
+
"large": {
|
241 |
+
"tp": 8,
|
242 |
+
"fp": 6,
|
243 |
+
"fn": 3,
|
244 |
+
"precision": 0.57,
|
245 |
+
"recall": 0.73,
|
246 |
+
"f1": 0.64
|
247 |
}
|
248 |
+
}
|
249 |
+
}
|
250 |
+
}
|
251 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|