Spaces:
Running
Running
Update ref-metrics.py
Browse files- ref-metrics.py +414 -96
ref-metrics.py
CHANGED
@@ -11,59 +11,153 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
|
|
14 |
|
15 |
-
|
16 |
-
import random
|
17 |
-
import datetime
|
18 |
-
import os
|
19 |
|
20 |
import datasets
|
21 |
import evaluate
|
22 |
-
|
23 |
-
|
24 |
-
import
|
|
|
|
|
25 |
|
26 |
_CITATION = """\
|
27 |
-
@InProceedings{
|
28 |
-
title = {
|
29 |
-
authors={
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
}
|
38 |
"""
|
39 |
|
40 |
_DESCRIPTION = """\
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
|
46 |
|
47 |
_KWARGS_DESCRIPTION = """
|
48 |
-
|
49 |
-
|
50 |
Args:
|
51 |
-
predictions: list of predictions
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
"""
|
59 |
|
60 |
|
61 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
62 |
-
class
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
def _info(self):
|
66 |
-
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
67 |
return evaluate.MetricInfo(
|
68 |
# This is the description that will appear on the modules page.
|
69 |
module_type="metric",
|
@@ -73,36 +167,265 @@ class UserFriendlyMetrics(evaluate.Metric):
|
|
73 |
# This defines the format of each prediction and reference
|
74 |
features=datasets.Features(
|
75 |
{
|
76 |
-
"predictions":
|
77 |
-
datasets.
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
}
|
83 |
),
|
84 |
# Additional links to the codebase or references
|
85 |
-
codebase_urls=[
|
86 |
-
|
|
|
|
|
87 |
)
|
88 |
|
89 |
-
def
|
90 |
-
"""
|
91 |
-
#
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
self,
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
):
|
99 |
"""
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
Args:
|
103 |
payload (Payload): The payload to compute the metric from.
|
104 |
**kwargs: Additional keyword arguments.
|
105 |
-
|
106 |
Returns:
|
107 |
dict: The computed metric results with the following format:
|
108 |
{
|
@@ -126,49 +449,44 @@ class UserFriendlyMetrics(evaluate.Metric):
|
|
126 |
- If the metric does not support area ranges, the metric should store the results under the `all` key.
|
127 |
- If a range area is provided it will be displayed in the output. if area_ranges_tuples is None, then all the area ranges will be displayed
|
128 |
"""
|
129 |
-
|
130 |
-
|
131 |
-
def dummy_values(self, area_ranges_tuples=None):
|
132 |
-
"""Dummy randome values in the expected format that all new metrics need to return"""
|
133 |
-
|
134 |
-
# Use default ranges if none are provided
|
135 |
-
if area_ranges_tuples is None:
|
136 |
-
area_names = ["all", "small", "medium", "large"]
|
137 |
-
else:
|
138 |
-
area_names = {
|
139 |
-
key
|
140 |
-
for key, value in area_ranges_tuples.items()
|
141 |
-
if value["range"] is not None
|
142 |
-
}
|
143 |
-
|
144 |
-
# Generate random dummy values
|
145 |
-
def generate_random_values():
|
146 |
-
return {
|
147 |
-
"tp": random.randint(0, 100), # Random integer between 0 and 100
|
148 |
-
"fp": random.randint(0, 50), # Random integer between 0 and 50
|
149 |
-
"fn": random.randint(0, 50), # Random integer between 0 and 50
|
150 |
-
"precision": round(
|
151 |
-
random.uniform(0.5, 1.0), 2
|
152 |
-
), # Random float between 0.5 and 1.0
|
153 |
-
"recall": round(
|
154 |
-
random.uniform(0.5, 1.0), 2
|
155 |
-
), # Random float between 0.5 and 1.0
|
156 |
-
"f1": round(
|
157 |
-
random.uniform(0.5, 1.0), 2
|
158 |
-
), # Random float between 0.5 and 1.0
|
159 |
-
}
|
160 |
-
|
161 |
-
# Initialize output structure
|
162 |
-
dummy_output = {"model_1": {"overall": {}, "per_sequence": {"sequence_1": {},"sequence_2": {}}}}
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
"""TODO: Add a description here."""
|
15 |
|
16 |
+
from typing import List, Literal, Tuple
|
|
|
|
|
|
|
17 |
|
18 |
import datasets
|
19 |
import evaluate
|
20 |
+
import numpy as np
|
21 |
+
from deprecated import deprecated
|
22 |
+
from seametrics.detection import PrecisionRecallF1Support
|
23 |
+
from seametrics.detection.utils import payload_to_det_metric
|
24 |
+
from seametrics.payload import Payload
|
25 |
|
26 |
_CITATION = """\
|
27 |
+
@InProceedings{coco:2020,
|
28 |
+
title = {Microsoft {COCO:} Common Objects in Context},
|
29 |
+
authors={Tsung{-}Yi Lin and
|
30 |
+
Michael Maire and
|
31 |
+
Serge J. Belongie and
|
32 |
+
James Hays and
|
33 |
+
Pietro Perona and
|
34 |
+
Deva Ramanan and
|
35 |
+
Piotr Dollar and
|
36 |
+
C. Lawrence Zitnick},
|
37 |
+
booktitle = {Computer Vision - {ECCV} 2014 - 13th European Conference, Zurich,
|
38 |
+
Switzerland, September 6-12, 2014, Proceedings, Part {V}},
|
39 |
+
series = {Lecture Notes in Computer Science},
|
40 |
+
volume = {8693},
|
41 |
+
pages = {740--755},
|
42 |
+
publisher = {Springer},
|
43 |
+
year={2014}
|
44 |
}
|
45 |
"""
|
46 |
|
47 |
_DESCRIPTION = """\
|
48 |
+
This evaluation metric is designed to give provide object detection metrics at
|
49 |
+
different object size levels. It is based on a modified version of the commonly used
|
50 |
+
COCO-evaluation metrics.
|
51 |
+
"""
|
52 |
|
53 |
|
54 |
_KWARGS_DESCRIPTION = """
|
55 |
+
Calculates object detection metrics given predicted and ground truth bounding boxes for
|
56 |
+
a single image.
|
57 |
Args:
|
58 |
+
predictions: list of predictions for each image. Each prediction should
|
59 |
+
be a dict containing the following
|
60 |
+
- 'boxes': list of bounding boxes, xywh in absolute pixel values
|
61 |
+
- 'labels': list of labels for each bounding box
|
62 |
+
- 'scores': list of scores for each bounding box
|
63 |
+
references: list of ground truth annotations for each image. Each reference should
|
64 |
+
be a dict containing the following
|
65 |
+
- 'boxes': list of bounding boxes, xywh in absolute pixel values
|
66 |
+
- 'labels': list of labels for each bounding box
|
67 |
+
- 'area': list of areas for each bounding box
|
68 |
+
Returns:
|
69 |
+
dict containing dicts for each specified area range with following items:
|
70 |
+
'range': specified area with [max_px_area, max_px_area]
|
71 |
+
'iouThr': min. IOU-threshold of a prediction with a ground truth box
|
72 |
+
to be considered a correct prediction
|
73 |
+
'maxDets': maximum number of detections
|
74 |
+
'tp': number of true positive (correct) predictions
|
75 |
+
'fp': number of false positive (incorrect) predictions
|
76 |
+
'fn': number of false negative (missed) predictions
|
77 |
+
'duplicates': number of duplicate predictions
|
78 |
+
'precision': best possible score = 1, worst possible score = 0
|
79 |
+
large if few false positive predictions
|
80 |
+
formula: tp/(fp+tp)
|
81 |
+
'recall' best possible score = 1, worst possible score = 0
|
82 |
+
large if few missed predictions
|
83 |
+
formula: tp/(tp+fn)
|
84 |
+
'f1': best possible score = 1, worst possible score = 0
|
85 |
+
trades off precision and recall
|
86 |
+
formula: 2*(precision*recall)/(precision+recall)
|
87 |
+
'support': number of ground truth bounding boxes considered in the evaluation,
|
88 |
+
'fpi': number of images with no ground truth but false positive predictions,
|
89 |
+
'nImgs': number of images considered in evaluation
|
90 |
+
Examples:
|
91 |
+
>>> import evaluate
|
92 |
+
>>> from seametrics.payload.processor import PayloadProcessor
|
93 |
+
>>> payload = PayloadProcessor(...).payload
|
94 |
+
>>> module = evaluate.load("SEA-AI/det-metrics", ...)
|
95 |
+
>>> module._add_payload(payload)
|
96 |
+
>>> result = module.compute()
|
97 |
+
>>> print(result)
|
98 |
+
{'all': {
|
99 |
+
'range': [0, 10000000000.0],
|
100 |
+
'iouThr': '0.00',
|
101 |
+
'maxDets': 100,
|
102 |
+
'tp': 1,
|
103 |
+
'fp': 3,
|
104 |
+
'fn': 1,
|
105 |
+
'duplicates': 0,
|
106 |
+
'precision': 0.25,
|
107 |
+
'recall': 0.5,
|
108 |
+
'f1': 0.3333333333333333,
|
109 |
+
'support': 2,
|
110 |
+
'fpi': 0,
|
111 |
+
'nImgs': 2
|
112 |
+
}
|
113 |
+
}
|
114 |
"""
|
115 |
|
116 |
|
117 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
118 |
+
class DetectionMetric(evaluate.Metric):
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
area_ranges_tuples: List[Tuple[str, List[int]]] = [("all", [0, 1e5**2])],
|
122 |
+
iou_threshold: List[float] = [1e-10],
|
123 |
+
class_agnostic: bool = True,
|
124 |
+
bbox_format: str = "xywh",
|
125 |
+
iou_type: Literal["bbox", "segm"] = "bbox",
|
126 |
+
payload: Payload = None,
|
127 |
+
**kwargs,
|
128 |
+
):
|
129 |
+
super().__init__(**kwargs)
|
130 |
+
|
131 |
+
# save parameters for later
|
132 |
+
self.payload = payload
|
133 |
+
self.model_names = payload.models if payload else ["custom"]
|
134 |
+
self.iou_threshold = iou_threshold
|
135 |
+
self.area_ranges_tuples = area_ranges_tuples
|
136 |
+
self.class_agnostic = class_agnostic
|
137 |
+
self.iou_type = iou_type
|
138 |
+
self.bbox_format = bbox_format
|
139 |
+
|
140 |
+
# postprocess parameters
|
141 |
+
self.iou_thresholds = (
|
142 |
+
iou_threshold if isinstance(iou_threshold, list) else [iou_threshold]
|
143 |
+
)
|
144 |
+
self.area_ranges = [v for _, v in area_ranges_tuples]
|
145 |
+
self.area_ranges_labels = [k for k, _ in area_ranges_tuples]
|
146 |
+
|
147 |
+
# initialize coco_metrics
|
148 |
+
self.coco_metric = PrecisionRecallF1Support(
|
149 |
+
iou_thresholds=self.iou_thresholds,
|
150 |
+
area_ranges=self.area_ranges,
|
151 |
+
area_ranges_labels=self.area_ranges_labels,
|
152 |
+
class_agnostic=self.class_agnostic,
|
153 |
+
iou_type=self.iou_type,
|
154 |
+
box_format=self.bbox_format,
|
155 |
+
)
|
156 |
+
|
157 |
+
# initialize evaluation metric
|
158 |
+
self._init_evaluation_metric()
|
159 |
|
160 |
def _info(self):
|
|
|
161 |
return evaluate.MetricInfo(
|
162 |
# This is the description that will appear on the modules page.
|
163 |
module_type="metric",
|
|
|
167 |
# This defines the format of each prediction and reference
|
168 |
features=datasets.Features(
|
169 |
{
|
170 |
+
"predictions": [
|
171 |
+
datasets.Features(
|
172 |
+
{
|
173 |
+
"boxes": datasets.Sequence(
|
174 |
+
datasets.Sequence(datasets.Value("float"))
|
175 |
+
),
|
176 |
+
"labels": datasets.Sequence(datasets.Value("int64")),
|
177 |
+
"scores": datasets.Sequence(datasets.Value("float")),
|
178 |
+
}
|
179 |
+
)
|
180 |
+
],
|
181 |
+
"references": [
|
182 |
+
datasets.Features(
|
183 |
+
{
|
184 |
+
"boxes": datasets.Sequence(
|
185 |
+
datasets.Sequence(datasets.Value("float"))
|
186 |
+
),
|
187 |
+
"labels": datasets.Sequence(datasets.Value("int64")),
|
188 |
+
"area": datasets.Sequence(datasets.Value("float")),
|
189 |
+
}
|
190 |
+
)
|
191 |
+
],
|
192 |
}
|
193 |
),
|
194 |
# Additional links to the codebase or references
|
195 |
+
codebase_urls=[
|
196 |
+
"https://github.com/SEA-AI/seametrics/tree/main",
|
197 |
+
"https://lightning.ai/docs/torchmetrics/stable/detection/mean_average_precision.html",
|
198 |
+
],
|
199 |
)
|
200 |
|
201 |
+
def add(self, *, prediction, reference, **kwargs):
|
202 |
+
"""Adds a batch of predictions and references to the metric"""
|
203 |
+
# in case the inputs are lists, convert them to numpy arrays
|
204 |
+
prediction = self._preprocess(prediction)
|
205 |
+
reference = self._preprocess(reference)
|
206 |
+
|
207 |
+
self.coco_metric.update(prediction, reference)
|
208 |
+
|
209 |
+
def _init_evaluation_metric(self, **kwargs):
|
210 |
+
"""
|
211 |
+
Initializes the evaluation metric by generating sample data, preprocessing predictions and references,
|
212 |
+
and then adding the processed data to the metric using the super class method with additional keyword arguments.
|
213 |
+
|
214 |
+
Parameters:
|
215 |
+
**kwargs: Additional keyword arguments for the super class method.
|
216 |
+
|
217 |
+
Returns:
|
218 |
+
None
|
219 |
+
"""
|
220 |
+
predictions, references = self._generate_sample_data()
|
221 |
+
predictions = self._preprocess(predictions)
|
222 |
+
references = self._preprocess(references)
|
223 |
+
|
224 |
+
# does not impact the metric, but is required for the interface x_x
|
225 |
+
super(evaluate.Metric, self).add(
|
226 |
+
prediction=self._postprocess(predictions),
|
227 |
+
references=self._postprocess(references),
|
228 |
+
**kwargs,
|
229 |
+
)
|
230 |
+
|
231 |
+
@deprecated(reason="Use `module._add_payload` instead")
|
232 |
+
def add_batch(self, payload: Payload, model_name: str = None):
|
233 |
+
"""Takes as input a payload and adds the batch to the metric"""
|
234 |
+
self._add_payload(payload, model_name)
|
235 |
+
|
236 |
+
def _compute(self, *, predictions, references, **kwargs):
|
237 |
+
"""Called within the evaluate.Metric.compute() method"""
|
238 |
+
|
239 |
+
results = {}
|
240 |
+
for model_name in self.model_names:
|
241 |
+
print(f"\n##### {model_name} #####")
|
242 |
+
# add payload if available (otherwise predictions and references must be added with add function)
|
243 |
+
if self.payload:
|
244 |
+
self._add_payload(self.payload, model_name)
|
245 |
+
|
246 |
+
results[model_name] = self.coco_metric.compute()
|
247 |
+
|
248 |
+
# reset coco_metrics for next model
|
249 |
+
self.coco_metric = PrecisionRecallF1Support(
|
250 |
+
iou_thresholds=self.iou_thresholds,
|
251 |
+
area_ranges=self.area_ranges,
|
252 |
+
area_ranges_labels=self.area_ranges_labels,
|
253 |
+
class_agnostic=self.class_agnostic,
|
254 |
+
iou_type=self.iou_type,
|
255 |
+
box_format=self.bbox_format,
|
256 |
+
)
|
257 |
+
return results
|
258 |
+
|
259 |
+
def _add_payload(self, payload: Payload, model_name: str = None):
|
260 |
+
"""Converts the payload to the format expected by the metric"""
|
261 |
+
# import only if needed since fiftyone is not a direct dependency
|
262 |
+
|
263 |
+
predictions, references = payload_to_det_metric(payload, model_name)
|
264 |
+
self.add(prediction=predictions, reference=references)
|
265 |
+
|
266 |
+
return self
|
267 |
+
|
268 |
+
def _preprocess(self, list_of_dicts):
|
269 |
+
"""Converts the lists to numpy arrays for type checking"""
|
270 |
+
return [self._lists_to_np(d) for d in list_of_dicts]
|
271 |
+
|
272 |
+
def _postprocess(self, list_of_dicts):
|
273 |
+
"""Converts the numpy arrays to lists for type checking"""
|
274 |
+
return [self._np_to_lists(d) for d in list_of_dicts]
|
275 |
+
|
276 |
+
def _np_to_lists(self, d):
|
277 |
+
"""datasets does not support numpy arrays for type checking"""
|
278 |
+
for k, v in d.items():
|
279 |
+
if isinstance(v, dict):
|
280 |
+
self._np_to_lists(v)
|
281 |
+
elif isinstance(v, np.ndarray):
|
282 |
+
d[k] = v.tolist()
|
283 |
+
return d
|
284 |
+
|
285 |
+
def _lists_to_np(self, d):
|
286 |
+
"""datasets does not support numpy arrays for type checking"""
|
287 |
+
for k, v in d.items():
|
288 |
+
if isinstance(v, dict):
|
289 |
+
self._lists_to_np(v)
|
290 |
+
elif isinstance(v, list):
|
291 |
+
d[k] = np.array(v)
|
292 |
+
return d
|
293 |
+
|
294 |
+
def generate_confidence_curves(
|
295 |
+
self, results, confidence_config={"T": 0, "R": 0, "K": 0, "A": 0, "M": 0}
|
296 |
):
|
297 |
"""
|
298 |
+
Generate confidence curves based on results and confidence configuration.
|
299 |
+
|
300 |
+
Parameters:
|
301 |
+
results (dict): Results of the evaluation for different models.
|
302 |
+
confidence_config (dict): Configuration for confidence values. Defaults to {"T": 0, "R": 0, "K": 0, "A": 0, "M": 0}.
|
303 |
+
T: [1e-10] iou threshold
|
304 |
+
R: recall threshold (not used)
|
305 |
+
K: class index (class-agnostic mAP, so only 0)
|
306 |
+
A: 0=all, 1=small, 2=medium, 3=large, ... (depending on area ranges)
|
307 |
+
M: [100] maxDets default in precision_recall_f1_support
|
308 |
+
|
309 |
+
Returns:
|
310 |
+
fig (plotly.graph_objects.Figure): The plotly figure showing the confidence curves.
|
311 |
+
"""
|
312 |
+
import plotly.graph_objects as go
|
313 |
+
from seametrics.detection.utils import get_confidence_metric_vals
|
314 |
+
|
315 |
+
# Create traces
|
316 |
+
fig = go.Figure()
|
317 |
+
metrics = ["precision", "recall", "f1"]
|
318 |
+
for model_name in self.model_names:
|
319 |
+
print(f"##### {model_name} #####")
|
320 |
+
plot_data = get_confidence_metric_vals(
|
321 |
+
cocoeval=results[model_name]["eval"],
|
322 |
+
T=confidence_config["T"],
|
323 |
+
R=confidence_config["R"],
|
324 |
+
K=confidence_config["K"],
|
325 |
+
A=confidence_config["A"],
|
326 |
+
M=confidence_config["M"],
|
327 |
+
)
|
328 |
+
|
329 |
+
for metric in metrics:
|
330 |
+
fig.add_trace(
|
331 |
+
go.Scatter(
|
332 |
+
x=plot_data["conf"],
|
333 |
+
y=plot_data[metric],
|
334 |
+
mode="lines",
|
335 |
+
name=f"{model_name} {metric}",
|
336 |
+
line=dict(dash=None if metric == "f1" else "dash"),
|
337 |
+
)
|
338 |
+
)
|
339 |
+
|
340 |
+
fig.update_layout(
|
341 |
+
title="Metric vs Confidence",
|
342 |
+
hovermode="x unified",
|
343 |
+
xaxis_title="Confidence",
|
344 |
+
yaxis_title="Metric value",
|
345 |
+
)
|
346 |
+
return fig
|
347 |
|
348 |
+
def wandb(self, results , wandb_runs: list = None, wandb_section: str = None, wandb_project='detection_metrics'):
|
349 |
+
"""
|
350 |
+
Logs metrics to Weights and Biases (wandb) for tracking and visualization.
|
351 |
+
|
352 |
+
This function logs the provided metrics to Weights and Biases (wandb), a platform for tracking machine learning experiments.
|
353 |
+
Each key in the `results` dictionary represents a separate run and the corresponding value contains the metrics for that run.
|
354 |
+
If a W&B run list is provided, the results of the runs will be added to the passed W&B runs. Otherwise new W&B runs will be created.
|
355 |
+
If a W&B section ist provided, the metrics will be logged in this section drop-down. Otherwise no extra W&B section is created
|
356 |
+
and the metrics are logged directly.
|
357 |
+
The function logs in to wandb using an API key obtained from the secret 'WANDB_API_KEY', initializes a run for
|
358 |
+
each key in `results` and logs the metrics.
|
359 |
+
|
360 |
+
Args:
|
361 |
+
results (dict): A dictionary where each key is a unique identifier for a run and each value is another dictionary
|
362 |
+
containing the metrics to log. Example:
|
363 |
+
{
|
364 |
+
"run1": {"metrics": {"accuracy": 0.9, "loss": 0.1}},
|
365 |
+
"run2": {"metrics": {"accuracy": 0.85, "loss": 0.15}}
|
366 |
+
}
|
367 |
+
wandb_runs (list, optional): A list containing W&B runs where the results should be added
|
368 |
+
(e.g. the first item in results will be added to the first run in wandb_runs, etc.)
|
369 |
+
wandb_section (str, optional): A string to specify the W&B
|
370 |
+
wandb_project (str, optional): The name of the wandb project to which the runs will be logged. Defaults to 'detection_metrics'.
|
371 |
+
|
372 |
+
Environment Variables:
|
373 |
+
WANDB_API_KEY: The API key for authenticating with wandb.
|
374 |
+
|
375 |
+
Imports:
|
376 |
+
os: To retrieve environment variables.
|
377 |
+
wandb: To interact with the Weights and Biases platform.
|
378 |
+
datetime: To generate a timestamp for run names.
|
379 |
+
"""
|
380 |
+
import os
|
381 |
+
import wandb
|
382 |
+
import datetime
|
383 |
+
|
384 |
+
current_datetime = datetime.datetime.now()
|
385 |
+
formatted_datetime = current_datetime.strftime("%Y-%m-%d_%H-%M-%S")
|
386 |
+
wandb.login(key=os.getenv('WANDB_API_KEY'))
|
387 |
+
|
388 |
+
if not wandb_runs is None:
|
389 |
+
assert len(wandb_runs) == len(results), "runs and results must have the same length"
|
390 |
+
|
391 |
+
for i, k in enumerate(results.keys()):
|
392 |
+
if wandb_runs is None:
|
393 |
+
run = wandb.init(project=wandb_project, name=f"{k}-{formatted_datetime}")
|
394 |
+
else:
|
395 |
+
run = wandb_runs[i]
|
396 |
+
run.log({f"{wandb_section}/{m}" : v for m, v in results[k]['metrics'].items()} if wandb_section is not None else results[k]['metrics'])
|
397 |
+
if wandb_runs is None:
|
398 |
+
run.finish()
|
399 |
+
|
400 |
+
def _generate_sample_data(self):
|
401 |
+
"""
|
402 |
+
Generates dummy sample data for predictions and references used for initialization.
|
403 |
+
|
404 |
+
Returns:
|
405 |
+
Tuple[List[Dict[str, List[Union[float, int]]]], List[Dict[str, List[Union[float, int]]]]]:
|
406 |
+
- predictions (List[Dict[str, List[Union[float, int]]]]): A list of dictionaries representing the predictions. Each dictionary contains the following keys:
|
407 |
+
- boxes (List[List[float]]): A list of bounding boxes in the format [x, y, w, h].
|
408 |
+
- labels (List[int]): A list of labels.
|
409 |
+
- scores (List[float]): A list of scores.
|
410 |
+
- references (List[Dict[str, List[Union[float, int]]]]): A list of dictionaries representing the references. Each dictionary contains the following keys:
|
411 |
+
- boxes (List[List[float]]): A list of bounding boxes in the format [x, y, w, h].
|
412 |
+
- labels (List[int]): A list of labels.
|
413 |
+
- area (List[float]): A list of areas.
|
414 |
+
"""
|
415 |
+
predictions = [
|
416 |
+
{"boxes": [[1.0, 2.0, 3.0, 4.0]], "labels": [0], "scores": [1.0]}
|
417 |
+
]
|
418 |
+
references = [{"boxes": [[1.0, 2.0, 3.0, 4.0]], "labels": [0], "area": [1.0]}]
|
419 |
+
|
420 |
+
return predictions, references
|
421 |
+
|
422 |
+
|
423 |
+
def compute_from_payload(self, payload: Payload):
|
424 |
+
"""
|
425 |
+
Compute the metric from the payload.
|
426 |
Args:
|
427 |
payload (Payload): The payload to compute the metric from.
|
428 |
**kwargs: Additional keyword arguments.
|
|
|
429 |
Returns:
|
430 |
dict: The computed metric results with the following format:
|
431 |
{
|
|
|
449 |
- If the metric does not support area ranges, the metric should store the results under the `all` key.
|
450 |
- If a range area is provided it will be displayed in the output. if area_ranges_tuples is None, then all the area ranges will be displayed
|
451 |
"""
|
452 |
+
results = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
453 |
|
454 |
+
for model_name in payload.models:
|
455 |
+
results[model_name] = {"overall": {}, "per_sequence": {}}
|
456 |
+
|
457 |
+
# per-sequence loop
|
458 |
+
for seq_name, sequence in payload.sequences.items():
|
459 |
+
# create new payload only with specific sequence and model
|
460 |
+
sequence_payload = Payload(
|
461 |
+
dataset=payload.dataset,
|
462 |
+
gt_field_name=payload.gt_field_name,
|
463 |
+
models=[model_name],
|
464 |
+
sequences={seq_name: sequence}
|
465 |
+
)
|
466 |
+
module = DetectionMetric(
|
467 |
+
area_ranges_tuples=self.area_ranges_tuples,
|
468 |
+
iou_threshold=self.iou_threshold,
|
469 |
+
class_agnostic=self.class_agnostic,
|
470 |
+
bbox_format=self.bbox_format,
|
471 |
+
iou_type=self.iou_type,
|
472 |
+
payload=sequence_payload
|
473 |
+
)
|
474 |
+
results[model_name]["per_sequence"][seq_name] = module.compute()[model_name]["metrics"]
|
475 |
|
476 |
+
# overall per-model loop
|
477 |
+
model_payload = Payload(
|
478 |
+
dataset=payload.dataset,
|
479 |
+
gt_field_name=payload.gt_field_name,
|
480 |
+
models=[model_name],
|
481 |
+
sequences=payload.sequences
|
482 |
+
)
|
483 |
+
module = DetectionMetric(
|
484 |
+
area_ranges_tuples=self.area_ranges_tuples,
|
485 |
+
iou_threshold=self.iou_threshold,
|
486 |
+
class_agnostic=self.class_agnostic,
|
487 |
+
bbox_format=self.bbox_format,
|
488 |
+
iou_type=self.iou_type,
|
489 |
+
payload=model_payload
|
490 |
+
)
|
491 |
+
results[model_name]["overall"] = module.compute()[model_name]["metrics"]
|
492 |
+
return results
|