Spaces:
Running
Running
File size: 3,248 Bytes
58ff7c0 f12b919 bd044ed 58ff7c0 f12b919 4de29b8 f12b919 58ff7c0 0eb3d2a f12b919 e49a2f4 d64615f 58ff7c0 8e5798a 71a8d2b f12b919 e49a2f4 4de29b8 cccedf3 bde8431 e49a2f4 5facf9a e49a2f4 4de29b8 da7328b ffbf899 4de29b8 da7328b 4de29b8 ffbf899 8e5798a f2e9ff4 86f14cf 8e5798a f12b919 8e5798a 69e13f0 f12b919 8e5798a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
app_file: app.py
colorFrom: yellow
colorTo: green
description: 'TODO: add a description here'
emoji: 🐢
pinned: false
runme:
id: 01HPS3ASFJXVQR88985QNSXVN1
version: v3
sdk: gradio
sdk_version: 4.36.0
tags:
- evaluate
- metric
title: ref-metrics
---
# How to Use
```python {"id":"01HPS3ASFHPCECERTYN7Z4Z7MN"}
import evaluate
from seametrics.payload.processor import PayloadProcessor
payload = {}
module = evaluate.load("SEA-AI/ref-metrics")
res = module._compute(payload, max_iou=0.5, recognition_thresholds=[0.3, 0.5, 0.8])
print(res)
```
## Output
```json
{
"model_1": {
"overall": {
"all": {
"tp": 50,
"fp": 20,
"fn": 10,
"precision": 0.71,
"recall": 0.83,
"f1": 0.76
},
"small": {
"tp": 15,
"fp": 5,
"fn": 2,
"precision": 0.75,
"recall": 0.88,
"f1": 0.81
},
"medium": {
"tp": 25,
"fp": 10,
"fn": 5,
"precision": 0.71,
"recall": 0.83,
"f1": 0.76
},
"large": {
"tp": 10,
"fp": 5,
"fn": 3,
"precision": 0.67,
"recall": 0.77,
"f1": 0.71
}
},
"per_sequence": {
"sequence_1": {
"all": {
"tp": 30,
"fp": 15,
"fn": 7,
"precision": 0.67,
"recall": 0.81,
"f1": 0.73
},
"small": {
"tp": 10,
"fp": 3,
"fn": 1,
"precision": 0.77,
"recall": 0.91,
"f1": 0.83
},
"medium": {
"tp": 15,
"fp": 7,
"fn": 2,
"precision": 0.68,
"recall": 0.88,
"f1": 0.77
},
"large": {
"tp": 5,
"fp": 2,
"fn": 1,
"precision": 0.71,
"recall": 0.83,
"f1": 0.76
}
}
}
},
}
```
## Citations
```bibtex {"id":"01HPS3ASFJXVQR88985GKHAQRE"}
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}}
```
```bibtex {"id":"01HPS3ASFJXVQR88985KRT478N"}
@article{milan2016mot16,
title={MOT16: A benchmark for multi-object tracking},
author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
journal={arXiv preprint arXiv:1603.00831},
year={2016}}
```
|