Spaces:
Running
Running
Grosch
commited on
Commit
·
4c8156b
1
Parent(s):
72bd9af
Initial setup
Browse files- .gitattributes +1 -0
- README.md +4 -4
- app.py +194 -0
- eynollah-flow.png +0 -0
- requirements.txt +6 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
|
README.md
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
---
|
| 2 |
title: Eynollah Demo
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 4.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
license:
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
title: Eynollah Demo
|
| 3 |
+
emoji: 👁
|
| 4 |
+
colorFrom: green
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.26.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import numpy as np
|
| 4 |
+
import cv2
|
| 5 |
+
from huggingface_hub import from_pretrained_keras
|
| 6 |
+
|
| 7 |
+
def resize_image(img_in,input_height,input_width):
|
| 8 |
+
return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST)
|
| 9 |
+
|
| 10 |
+
def do_prediction(model_name, img):
|
| 11 |
+
model = from_pretrained_keras(model_name)
|
| 12 |
+
|
| 13 |
+
match model_name:
|
| 14 |
+
# numerical output
|
| 15 |
+
case "SBB/eynollah-column-classifier":
|
| 16 |
+
|
| 17 |
+
num_col=model.layers[len(model.layers)-1].output_shape[1]
|
| 18 |
+
return "Found {} columns".format(num_col), None
|
| 19 |
+
|
| 20 |
+
# bitmap output
|
| 21 |
+
case "SBB/eynollah-binarization" | "SBB/eynollah-page-extraction" | "SBB/eynollah-textline" | "SBB/eynollah-textline_light" | "SBB/eynollah-enhancement" | "SBB/eynollah-tables" | "SBB/eynollah-main-regions" | "SBB/eynollah-main-regions-aug-rotation" | "SBB/eynollah-main-regions-aug-scaling" | "SBB/eynollah-main-regions-ensembled" | "SBB/eynollah-full-regions-1column" | "SBB/eynollah-full-regions-3pluscolumn":
|
| 22 |
+
|
| 23 |
+
img_height_model=model.layers[len(model.layers)-1].output_shape[1]
|
| 24 |
+
img_width_model=model.layers[len(model.layers)-1].output_shape[2]
|
| 25 |
+
n_classes=model.layers[len(model.layers)-1].output_shape[3]
|
| 26 |
+
|
| 27 |
+
if img.shape[0] < img_height_model:
|
| 28 |
+
img = resize_image(img, img_height_model, img.shape[1])
|
| 29 |
+
|
| 30 |
+
if img.shape[1] < img_width_model:
|
| 31 |
+
img = resize_image(img, img.shape[0], img_width_model)
|
| 32 |
+
|
| 33 |
+
marginal_of_patch_percent = 0.1
|
| 34 |
+
margin = int(marginal_of_patch_percent * img_height_model)
|
| 35 |
+
width_mid = img_width_model - 2 * margin
|
| 36 |
+
height_mid = img_height_model - 2 * margin
|
| 37 |
+
img = img / float(255.0)
|
| 38 |
+
img = img.astype(np.float16)
|
| 39 |
+
img_h = img.shape[0]
|
| 40 |
+
img_w = img.shape[1]
|
| 41 |
+
prediction_true = np.zeros((img_h, img_w, 3))
|
| 42 |
+
mask_true = np.zeros((img_h, img_w))
|
| 43 |
+
nxf = img_w / float(width_mid)
|
| 44 |
+
nyf = img_h / float(height_mid)
|
| 45 |
+
nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf)
|
| 46 |
+
nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf)
|
| 47 |
+
|
| 48 |
+
for i in range(nxf):
|
| 49 |
+
for j in range(nyf):
|
| 50 |
+
if i == 0:
|
| 51 |
+
index_x_d = i * width_mid
|
| 52 |
+
index_x_u = index_x_d + img_width_model
|
| 53 |
+
else:
|
| 54 |
+
index_x_d = i * width_mid
|
| 55 |
+
index_x_u = index_x_d + img_width_model
|
| 56 |
+
if j == 0:
|
| 57 |
+
index_y_d = j * height_mid
|
| 58 |
+
index_y_u = index_y_d + img_height_model
|
| 59 |
+
else:
|
| 60 |
+
index_y_d = j * height_mid
|
| 61 |
+
index_y_u = index_y_d + img_height_model
|
| 62 |
+
if index_x_u > img_w:
|
| 63 |
+
index_x_u = img_w
|
| 64 |
+
index_x_d = img_w - img_width_model
|
| 65 |
+
if index_y_u > img_h:
|
| 66 |
+
index_y_u = img_h
|
| 67 |
+
index_y_d = img_h - img_height_model
|
| 68 |
+
|
| 69 |
+
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
|
| 70 |
+
label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]),
|
| 71 |
+
verbose=0)
|
| 72 |
+
|
| 73 |
+
seg = np.argmax(label_p_pred, axis=3)[0]
|
| 74 |
+
|
| 75 |
+
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
| 76 |
+
|
| 77 |
+
if i == 0 and j == 0:
|
| 78 |
+
seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
|
| 79 |
+
#seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin]
|
| 80 |
+
#mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg
|
| 81 |
+
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color
|
| 82 |
+
elif i == nxf - 1 and j == nyf - 1:
|
| 83 |
+
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :]
|
| 84 |
+
#seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0]
|
| 85 |
+
#mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0] = seg
|
| 86 |
+
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg_color
|
| 87 |
+
elif i == 0 and j == nyf - 1:
|
| 88 |
+
seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :]
|
| 89 |
+
#seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin]
|
| 90 |
+
#mask_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin] = seg
|
| 91 |
+
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg_color
|
| 92 |
+
elif i == nxf - 1 and j == 0:
|
| 93 |
+
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
|
| 94 |
+
#seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0]
|
| 95 |
+
#mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg
|
| 96 |
+
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color
|
| 97 |
+
elif i == 0 and j != 0 and j != nyf - 1:
|
| 98 |
+
seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
|
| 99 |
+
#seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin]
|
| 100 |
+
#mask_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg
|
| 101 |
+
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color
|
| 102 |
+
elif i == nxf - 1 and j != 0 and j != nyf - 1:
|
| 103 |
+
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
|
| 104 |
+
#seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0]
|
| 105 |
+
#mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg
|
| 106 |
+
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color
|
| 107 |
+
elif i != 0 and i != nxf - 1 and j == 0:
|
| 108 |
+
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
|
| 109 |
+
#seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin]
|
| 110 |
+
#mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg
|
| 111 |
+
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color
|
| 112 |
+
elif i != 0 and i != nxf - 1 and j == nyf - 1:
|
| 113 |
+
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :]
|
| 114 |
+
#seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin]
|
| 115 |
+
#mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin] = seg
|
| 116 |
+
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg_color
|
| 117 |
+
else:
|
| 118 |
+
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
|
| 119 |
+
#seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin]
|
| 120 |
+
#mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg
|
| 121 |
+
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color
|
| 122 |
+
|
| 123 |
+
prediction_true = prediction_true.astype(np.uint8)
|
| 124 |
+
|
| 125 |
+
'''
|
| 126 |
+
img = img / float(255.0)
|
| 127 |
+
image = resize_image(image, 224,448)
|
| 128 |
+
prediction = model.predict(image.reshape(1,224,448,image.shape[2]))
|
| 129 |
+
prediction = tf.squeeze(tf.round(prediction))
|
| 130 |
+
|
| 131 |
+
prediction = np.argmax(prediction,axis=2)
|
| 132 |
+
|
| 133 |
+
prediction = np.repeat(prediction[:, :, np.newaxis]*255, 3, axis=2)
|
| 134 |
+
print(prediction.shape)
|
| 135 |
+
|
| 136 |
+
'''
|
| 137 |
+
prediction_true = prediction_true * -1
|
| 138 |
+
prediction_true = prediction_true + 1
|
| 139 |
+
return "No numerical output", prediction_true * 255
|
| 140 |
+
|
| 141 |
+
# catch-all (we should not reach this)
|
| 142 |
+
case _:
|
| 143 |
+
return None, None
|
| 144 |
+
|
| 145 |
+
title = "Welcome to the Eynollah Demo page! 👁️"
|
| 146 |
+
description = """
|
| 147 |
+
<div class="row" style="display: flex">
|
| 148 |
+
<div class="column" style="flex: 50%; font-size: 17px">
|
| 149 |
+
This Space demonstrates the functionality of various Eynollah models developed at <a rel="nofollow" href="https://huggingface.co/SBB">SBB</a>.
|
| 150 |
+
<br><br>
|
| 151 |
+
The Eynollah suite introduces an <u>end-to-end pipeline</u> to extract layout, text lines and reading order for historic documents, where the output can be used as an input for OCR engines.
|
| 152 |
+
Please keep in mind that with this demo you can just use <u>one of the 13 sub-modules</u> of the whole Eynollah system <u>at a time</u>.
|
| 153 |
+
</div>
|
| 154 |
+
<div class="column" style="flex: 5%; font-size: 17px"></div>
|
| 155 |
+
<div class="column" style="flex: 45%; font-size: 17px">
|
| 156 |
+
<strong style="font-size: 19px">Resources for more information:</strong>
|
| 157 |
+
<ul>
|
| 158 |
+
<li>The GitHub Repo can be found <a rel="nofollow" href="https://github.com/qurator-spk/eynollah">here</a></li>
|
| 159 |
+
<li>Associated Paper: <a rel="nofollow" href="https://doi.org/10.1145/3604951.3605513">Document Layout Analysis with Deep Learning and Heuristics</a></li>
|
| 160 |
+
<li>The full Eynollah pipeline can be viewed <a rel="nofollow" href="https://huggingface.co/spaces/SBB/eynollah-demo-test/blob/main/eynollah-flow.png">here</a></li>
|
| 161 |
+
</ul>
|
| 162 |
+
</li>
|
| 163 |
+
</div>
|
| 164 |
+
</div>
|
| 165 |
+
"""
|
| 166 |
+
iface = gr.Interface(
|
| 167 |
+
title=title,
|
| 168 |
+
description=description,
|
| 169 |
+
fn=do_prediction,
|
| 170 |
+
inputs=[
|
| 171 |
+
gr.Dropdown([
|
| 172 |
+
"SBB/eynollah-binarization",
|
| 173 |
+
"SBB/eynollah-enhancement",
|
| 174 |
+
"SBB/eynollah-page-extraction",
|
| 175 |
+
"SBB/eynollah-column-classifier",
|
| 176 |
+
"SBB/eynollah-tables",
|
| 177 |
+
"SBB/eynollah-textline",
|
| 178 |
+
"SBB/eynollah-textline_light",
|
| 179 |
+
"SBB/eynollah-main-regions",
|
| 180 |
+
"SBB/eynollah-main-regions-aug-rotation",
|
| 181 |
+
"SBB/eynollah-main-regions-aug-scaling",
|
| 182 |
+
"SBB/eynollah-main-regions-ensembled",
|
| 183 |
+
"SBB/eynollah-full-regions-1column",
|
| 184 |
+
"SBB/eynollah-full-regions-3pluscolumn"
|
| 185 |
+
], label="Select one model of the Eynollah suite 👇", info=""),
|
| 186 |
+
gr.Image()
|
| 187 |
+
],
|
| 188 |
+
outputs=[
|
| 189 |
+
gr.Textbox(label="Output of model (numerical or bitmap) ⬇️"),
|
| 190 |
+
gr.Image()
|
| 191 |
+
],
|
| 192 |
+
#examples=[['example-1.jpg']]
|
| 193 |
+
)
|
| 194 |
+
iface.launch()
|
eynollah-flow.png
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tensorflow == 2.12
|
| 2 |
+
opencv-python
|
| 3 |
+
tqdm
|
| 4 |
+
pandas
|
| 5 |
+
seaborn
|
| 6 |
+
huggingface_hub
|