import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch # Load the Salesforce/codet5-base model and tokenizer # We are using the 'Salesforce/codet5-base' model, which is a pre-trained model for code-related tasks. # The AutoTokenizer and AutoModelForSeq2SeqLM classes from the Transformers library are used to load the model and tokenizer. model_name = "Salesforce/codet5-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # Function to generate code # This function takes a prompt (code-related query) as input and generates code based on that prompt. # It uses the loaded model and tokenizer to encode the input, generate the output, and then decode the generated text. def generate_code(prompt, max_length=100): # Encode the input prompt using the tokenizer input_ids = tokenizer.encode(prompt, return_tensors="pt") # Generate the output using the model # The `model.generate()` function is used to generate the output sequence based on the input. # The `max_length` parameter sets the maximum length of the generated sequence. # The `num_return_sequences` parameter specifies the number of output sequences to be generated (in this case, 1). output = model.generate(input_ids, max_length=max_length, num_return_sequences=1) # Decode the generated output to get the actual code # The `tokenizer.decode()` function is used to convert the output token IDs back to readable text. # The `skip_special_tokens=True` argument ensures that any special tokens (e.g., start/end of sequence tokens) are removed from the output. generated_code = tokenizer.decode(output[0], skip_special_tokens=True) # Return the generated code return generated_code # Function to handle chat interaction # This function is responsible for managing the chat interaction between the user and the system. # It takes the user's message and the chat history as input, and returns the system's response and the updated chat history. def chat_interaction(message, history): # Initialize the chat history if it's not provided history = history or [] # Generate the response using the `generate_code` function response = generate_code(message) # Update the chat history by appending the user's message and the system's response history.append((message, response)) # Return the empty message (to clear the input field) and the updated chat history return "", history # Create the Gradio interface # The Gradio library is used to create an interactive web interface for the chat application. with gr.Blocks(theme=gr.themes.Soft()) as demo: # Add a Markdown title for the interface gr.Markdown("# S-Dreamer Salesforce/codet5-base Chat Interface") # Create a row with two columns with gr.Row(): # Left column for the chat area with gr.Column(scale=3): # Add a chatbot component to display the chat history chatbot = gr.Chatbot(height=400) # Add a text input field for the user to enter messages message = gr.Textbox(label="Enter your code-related query", placeholder="Type your message here...") # Add a submit button submit_button = gr.Button("Submit") # Right column for the feature list with gr.Column(scale=1): # Add Markdown sections for the features gr.Markdown("## Features") gr.Markdown("- Code generation") gr.Markdown("- Code completion") gr.Markdown("- Code explanation") gr.Markdown("- Error correction") # Add a clear button to reset the chat clear_button = gr.Button("Clear Chat") # Connect the submit button to the `chat_interaction` function submit_button.click(chat_interaction, inputs=[message, chatbot], outputs=[message, chatbot]) # Connect the clear button to a lambda function that clears the chat clear_button.click(lambda: None, outputs=[chatbot], inputs=[]) # Launch the Gradio interface demo.launch()