Spaces:
Runtime error
Runtime error
File size: 14,344 Bytes
fd4fe18 f5e7a4a fd4fe18 69a6242 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import os
import numpy as np
from PIL import Image
from torchvision import transforms, models
import torch
import torch.nn.functional as F
import pickle
import faiss
import gradio as gr
import time
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
# Set up the image transformation
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Data augmentation transforms
augment_transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(20),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
transforms.RandomResizedCrop(224, scale=(0.8, 1.0), ratio=(0.75, 1.33)),
])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_model():
model = models.efficientnet_b0(pretrained=True)
model.classifier = torch.nn.Identity() # Remove the final classification layer
model = model.to(device)
model.eval()
return model
model = load_model()
def process_image(image, similarity_threshold):
similarity_threshold = similarity_threshold / 100.0
query_features = extract_features(image)
similar_images, similarities, similar_categories = search_similar_images(
index, image_paths, categories, query_features, k=50
)
matched_images = []
filtered_similarities = []
filtered_file_names = []
for img_path, sim in zip(similar_images, similarities):
if sim >= similarity_threshold:
img = Image.open(img_path)
matched_images.append(img)
filtered_similarities.append(sim)
filtered_file_names.append(os.path.basename(img_path))
predicted_class = max(set(similar_categories[:5]), key=similar_categories[:5].count)
return matched_images, filtered_similarities, filtered_file_names, predicted_class
def update_max_images(similarity_threshold):
similarity_threshold = similarity_threshold / 100.0
count = 0
for features in index.reconstruct_n(0, index.ntotal):
similarity = np.dot(features, features)
if similarity >= similarity_threshold:
count += 1
max_images = min(count, 50)
return max_images
def extract_features(img):
img_t = transform(img)
batch_t = torch.unsqueeze(img_t, 0).to(device)
with torch.no_grad():
features = model(batch_t)
features = F.normalize(features, p=2, dim=1)
return features.cpu().squeeze().numpy()
def generate_augmented_images(img, num_augmented=5):
augmented_images = []
for _ in range(num_augmented):
augmented = augment_transform(img)
augmented_images.append(augmented)
return augmented_images
# def load_and_index_images(root_dir): #without adding data augmented images
# image_paths = []
# features_list = []
# categories = []
# for category in os.listdir(root_dir):
# category_path = os.path.join(root_dir, category)
# if os.path.isdir(category_path):
# for img_name in os.listdir(category_path):
# img_path = os.path.join(category_path, img_name)
# img = Image.open(img_path).convert('RGB')
# features = extract_features(img)
# image_paths.append(img_path)
# features_list.append(features)
# categories.append(category)
# features_array = np.array(features_list).astype('float32')
# d = features_array.shape[1] # dimension
# index = faiss.IndexFlatIP(d) # use inner product (cosine similarity on normalized vectors)
# index.add(features_array)
# return index, image_paths, categories
def load_and_index_images(root_dir):
image_paths = []
features_list = []
categories = []
for category in os.listdir(root_dir):
category_path = os.path.join(root_dir, category)
if os.path.isdir(category_path):
for img_name in os.listdir(category_path):
img_path = os.path.join(category_path, img_name)
img = Image.open(img_path).convert('RGB')
# Generate augmented images
augmented_images = generate_augmented_images(img)
features = extract_features(img)
image_paths.append(img_path)
features_list.append(features)
categories.append(category)
for aug_img in augmented_images:
aug_features = extract_features(aug_img)
features_list.append(aug_features)
image_paths.append(img_path) # Use original path for augmented images
categories.append(category)
features_array = np.array(features_list).astype('float32')
d = features_array.shape[1] # dimension
index = faiss.IndexFlatIP(d) # use inner product (cosine similarity on normalized vectors)
index.add(features_array)
return index, image_paths, categories
def save_index_and_metadata(nn, image_paths, categories, index_file, metadata_file):
with open(index_file, 'wb') as f:
pickle.dump(nn, f)
with open(metadata_file, 'wb') as f:
pickle.dump((image_paths, categories), f)
def load_index_and_metadata(index_file, metadata_file):
with open(index_file, 'rb') as f:
nn = pickle.load(f)
with open(metadata_file, 'rb') as f:
image_paths, categories = pickle.load(f)
return nn, image_paths, categories
def search_similar_images(index, image_paths, categories, query_features, k=20):
query_features = query_features.reshape(1, -1).astype('float32')
similarities, indices = index.search(query_features, k)
similar_images = [image_paths[i] for i in indices[0]]
similarity_scores = similarities[0]
similar_categories = [categories[i] for i in indices[0]]
return similar_images, similarity_scores, similar_categories
def index_files_exist(index_file, metadata_file):
return os.path.exists(index_file) and os.path.exists(metadata_file)
def search_and_display(image, similarity_threshold, num_display):
query_features = extract_features(image)
similar_images, similarities, similar_categories = search_similar_images(
index, image_paths, categories, query_features, k=50
)
predicted_class = max(set(similar_categories[:5]), key=similar_categories[:5].count)
query_file_name = "query_image.jpg"
seen_file_names = set([query_file_name])
filtered_results = []
for img, sim, cat in zip(similar_images[1:], similarities[1:], similar_categories[1:]):
file_name = os.path.basename(img)
if sim >= similarity_threshold and cat == predicted_class and file_name not in seen_file_names:
filtered_results.append((img, sim))
seen_file_names.add(file_name)
output_images = []
output_labels = []
output_images.append(image)
output_labels.append(f"Query Image\nPredicted Category: {predicted_class}")
if similar_images:
matched_image_path = similar_images[0]
matched_image = Image.open(matched_image_path)
output_images.append(matched_image)
output_labels.append(f"Matched Image\nSimilarity: {similarities[0]:.2f}\nImage ID: {os.path.basename(matched_image_path)}")
for i, (img_path, sim) in enumerate(filtered_results[:num_display]):
img = Image.open(img_path)
output_images.append(img)
output_labels.append(f"Similarity: {sim:.2f}%\nFile Name: {os.path.basename(img_path)}")
return output_images, output_labels, f"Product Category: {predicted_class}"
# Load index and metadata
index_file = "faiss-d2-nn_index.pkl"
metadata_file = "faiss-d2-image_metadata.pkl"
if not os.path.exists(index_file) or not os.path.exists(metadata_file):
root_dir = "Dataset2"
index, image_paths, categories = load_and_index_images(root_dir)
save_index_and_metadata(index, image_paths, categories, index_file, metadata_file)
else:
index, image_paths, categories = load_index_and_metadata(index_file, metadata_file)
print(f"Index size: {index.ntotal}")
print(f"Number of image paths: {len(image_paths)}")
print(f"Number of categories: {len(set(categories))}")
# Define Gradio interface
def gradio_interface(image, similarity_threshold, num_display):
matched_images, similarities, file_names, predicted_category = process_image(image, similarity_threshold)
print(f"Debug: Number of matched images: {len(matched_images)}")
print(f"Debug: Similarity scores: {similarities}")
perfect_match = None
similar_products = []
seen_file_names = set()
highest_similarity = 0
highest_similarity_match = None
for img, sim, name in zip(matched_images, similarities, file_names):
print(f"Debug: Processing image {name} with similarity {sim}")
if sim > highest_similarity:
highest_similarity = sim
highest_similarity_match = (img, f"Similarity: {sim*100:.2f}%\nProduct name: {name}")
if sim >= 0.99 and perfect_match is None:
perfect_match = (img, f"Similarity: {sim*100:.2f}%\nProduct name: {name}")
seen_file_names.add(name)
print(f"Debug: Near-perfect match found: {name}")
elif name not in seen_file_names:
similar_products.append((img, f"{sim*100:.2f}% - {name}"))
seen_file_names.add(name)
if perfect_match is None:
perfect_match = highest_similarity_match
print(f"Debug: Using highest similarity match: {highest_similarity}")
return (
f"{predicted_category}",
perfect_match[0],
perfect_match[1],
similar_products[:num_display]
)
class ImageSearchState:
def __init__(self):
self.matched_images = None
self.similarities = None
self.file_names = None
self.predicted_category = None
self.filtered_products = None
state = ImageSearchState()
def process_uploaded_image(image):
if image is None:
return None, None, None, None, gr.Slider(minimum=1, maximum=50, value=10, step=1, label="Set value to display total images")
state.matched_images, state.similarities, state.file_names, state.predicted_category = process_image(image, 0) # Use 0 to get all matches
max_images = len(state.matched_images)
updated_num_images_slider = gr.Slider(minimum=1, maximum=max_images, value=min(10, max_images), step=1, label=f"Set value to display total images (max: {max_images})")
return update_results(50, 10) # Default values
def update_results(similarity_threshold, num_display):
if state.matched_images is None:
return None, None, None, None, gr.Slider(minimum=1, maximum=50, value=10, step=1, label="Set value to display total images")
perfect_match = None
similar_products = []
seen_file_names = set()
highest_similarity = 0
highest_similarity_match = None
similarity_threshold = similarity_threshold / 100.0 # Convert to 0-1 range
for img, sim, name in zip(state.matched_images, state.similarities, state.file_names):
if sim > highest_similarity:
highest_similarity = sim
highest_similarity_match = (img, f"Similarity: {sim*100:.2f}%\nProduct name: {name}")
if sim >= 0.99 and perfect_match is None:
perfect_match = (img, f"Similarity: {sim*100:.2f}%\nProduct name: {name}")
seen_file_names.add(name)
elif sim >= similarity_threshold and name not in seen_file_names:
similar_products.append((img, f"{sim*100:.2f}% - {name}"))
seen_file_names.add(name)
if perfect_match is None:
perfect_match = highest_similarity_match
state.filtered_products = similar_products
max_images = len(similar_products)
updated_num_images_slider = gr.Slider(minimum=1, maximum=max_images, value=min(num_display, max_images), step=1, label=f"Set value to display total images (max: {max_images})")
return (
f"{state.predicted_category}",
perfect_match[0] if perfect_match else None,
perfect_match[1] if perfect_match else "No perfect match found",
similar_products[:num_display],
updated_num_images_slider
)
def update_display(num_display):
time.sleep(1) # 1 second delay
return state.filtered_products[:num_display]
with gr.Blocks() as demo:
gr.Markdown("# Product Image Search")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Upload Product Image")
with gr.Column(scale=1):
similarity_slider = gr.Slider(minimum=0, maximum=100, value=50, step=1, label="Set percentage to get similar images")
num_images_slider = gr.Slider(minimum=1, maximum=50, value=10, step=1, label="Set value to display total images")
gr.Markdown("## Product Category")
with gr.Row():
category_output = gr.Textbox(label="Detected Category", placeholder="Detected product category will appear here.")
gr.Markdown("## 100% Match Result")
with gr.Row():
with gr.Column(scale=1):
perfect_match_image = gr.Image(label="100% Matched Image", show_label=False)
with gr.Column(scale=1):
perfect_match_info = gr.Textbox(label="Match Information", placeholder="Details of the 100% match will appear here.")
gr.Markdown("## Similar Images")
similar_products_gallery = gr.Gallery(label="Similar Products", show_label=False, columns=5, rows=None, height="auto", object_fit="contain")
image_input.change(
fn=process_uploaded_image,
inputs=[image_input],
outputs=[category_output, perfect_match_image, perfect_match_info, similar_products_gallery, num_images_slider]
)
similarity_slider.change(
fn=update_results,
inputs=[similarity_slider, num_images_slider],
outputs=[category_output, perfect_match_image, perfect_match_info, similar_products_gallery, num_images_slider]
)
num_images_slider.release(
fn=update_display,
inputs=[num_images_slider],
outputs=[similar_products_gallery]
)
demo.launch() |