File size: 14,344 Bytes
fd4fe18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e7a4a
fd4fe18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69a6242
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import os
import numpy as np
from PIL import Image
from torchvision import transforms, models
import torch
import torch.nn.functional as F
import pickle
import faiss
import gradio as gr
import time

import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'

# Set up the image transformation
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

# Data augmentation transforms
augment_transform = transforms.Compose([
    transforms.RandomHorizontalFlip(),
    transforms.RandomRotation(20),
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    transforms.RandomResizedCrop(224, scale=(0.8, 1.0), ratio=(0.75, 1.33)),
])

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def load_model():
    model = models.efficientnet_b0(pretrained=True)
    model.classifier = torch.nn.Identity()  # Remove the final classification layer
    model = model.to(device)
    model.eval()
    return model

model = load_model()


def process_image(image, similarity_threshold):
    similarity_threshold = similarity_threshold / 100.0
    query_features = extract_features(image)
    similar_images, similarities, similar_categories = search_similar_images(
        index, image_paths, categories, query_features, k=50
    )
    matched_images = []
    filtered_similarities = []
    filtered_file_names = []

    for img_path, sim in zip(similar_images, similarities):
        if sim >= similarity_threshold:
            img = Image.open(img_path)
            matched_images.append(img)
            filtered_similarities.append(sim)
            filtered_file_names.append(os.path.basename(img_path))

    predicted_class = max(set(similar_categories[:5]), key=similar_categories[:5].count)

    return matched_images, filtered_similarities, filtered_file_names, predicted_class

def update_max_images(similarity_threshold):
    similarity_threshold = similarity_threshold / 100.0
    count = 0
    for features in index.reconstruct_n(0, index.ntotal):
        similarity = np.dot(features, features)
        if similarity >= similarity_threshold:
            count += 1
    max_images = min(count, 50)
    return max_images


def extract_features(img):
    img_t = transform(img)
    batch_t = torch.unsqueeze(img_t, 0).to(device)
    with torch.no_grad():
        features = model(batch_t)
    features = F.normalize(features, p=2, dim=1)
    return features.cpu().squeeze().numpy()

def generate_augmented_images(img, num_augmented=5):
    augmented_images = []
    for _ in range(num_augmented):
        augmented = augment_transform(img)
        augmented_images.append(augmented)
    return augmented_images

# def load_and_index_images(root_dir): #without adding data augmented images
#     image_paths = []
#     features_list = []
#     categories = []
#     for category in os.listdir(root_dir):
#         category_path = os.path.join(root_dir, category)
#         if os.path.isdir(category_path):
#             for img_name in os.listdir(category_path):
#                 img_path = os.path.join(category_path, img_name)
#                 img = Image.open(img_path).convert('RGB')
                
#                 features = extract_features(img)
#                 image_paths.append(img_path)
#                 features_list.append(features)
#                 categories.append(category)
    
#     features_array = np.array(features_list).astype('float32')
    
#     d = features_array.shape[1]  # dimension
#     index = faiss.IndexFlatIP(d)  # use inner product (cosine similarity on normalized vectors)
#     index.add(features_array)
    
#     return index, image_paths, categories

def load_and_index_images(root_dir):
    image_paths = []
    features_list = []
    categories = []
    for category in os.listdir(root_dir):
        category_path = os.path.join(root_dir, category)
        if os.path.isdir(category_path):
            for img_name in os.listdir(category_path):
                img_path = os.path.join(category_path, img_name)
                img = Image.open(img_path).convert('RGB')
                
                 # Generate augmented images
                augmented_images = generate_augmented_images(img)

                features = extract_features(img)
                image_paths.append(img_path)
                features_list.append(features)
                categories.append(category)

                for aug_img in augmented_images:
                    aug_features = extract_features(aug_img)
                    features_list.append(aug_features)
                    image_paths.append(img_path)  # Use original path for augmented images
                    categories.append(category)
    
    features_array = np.array(features_list).astype('float32')
    
    d = features_array.shape[1]  # dimension
    index = faiss.IndexFlatIP(d)  # use inner product (cosine similarity on normalized vectors)
    index.add(features_array)
    
    return index, image_paths, categories

def save_index_and_metadata(nn, image_paths, categories, index_file, metadata_file):
    with open(index_file, 'wb') as f:
        pickle.dump(nn, f)
    with open(metadata_file, 'wb') as f:
        pickle.dump((image_paths, categories), f)

def load_index_and_metadata(index_file, metadata_file):
    with open(index_file, 'rb') as f:
        nn = pickle.load(f)
    with open(metadata_file, 'rb') as f:
        image_paths, categories = pickle.load(f)
    return nn, image_paths, categories

def search_similar_images(index, image_paths, categories, query_features, k=20):
    query_features = query_features.reshape(1, -1).astype('float32')
    similarities, indices = index.search(query_features, k)
    similar_images = [image_paths[i] for i in indices[0]]
    similarity_scores = similarities[0]
    similar_categories = [categories[i] for i in indices[0]]
    return similar_images, similarity_scores, similar_categories

def index_files_exist(index_file, metadata_file):
    return os.path.exists(index_file) and os.path.exists(metadata_file)

def search_and_display(image, similarity_threshold, num_display):
    query_features = extract_features(image)
    similar_images, similarities, similar_categories = search_similar_images(
        index, image_paths, categories, query_features, k=50
    )

    predicted_class = max(set(similar_categories[:5]), key=similar_categories[:5].count)
    query_file_name = "query_image.jpg"
    seen_file_names = set([query_file_name])
    filtered_results = []
    for img, sim, cat in zip(similar_images[1:], similarities[1:], similar_categories[1:]):
        file_name = os.path.basename(img)
        if sim >= similarity_threshold and cat == predicted_class and file_name not in seen_file_names:
            filtered_results.append((img, sim))
            seen_file_names.add(file_name)

    output_images = []
    output_labels = []
    output_images.append(image)
    output_labels.append(f"Query Image\nPredicted Category: {predicted_class}")

    if similar_images:
        matched_image_path = similar_images[0]
        matched_image = Image.open(matched_image_path)
        output_images.append(matched_image)
        output_labels.append(f"Matched Image\nSimilarity: {similarities[0]:.2f}\nImage ID: {os.path.basename(matched_image_path)}")

    for i, (img_path, sim) in enumerate(filtered_results[:num_display]):
        img = Image.open(img_path)
        output_images.append(img)
        output_labels.append(f"Similarity: {sim:.2f}%\nFile Name: {os.path.basename(img_path)}")

    return output_images, output_labels, f"Product Category: {predicted_class}"

# Load index and metadata
index_file = "faiss-d2-nn_index.pkl"
metadata_file = "faiss-d2-image_metadata.pkl"

if not os.path.exists(index_file) or not os.path.exists(metadata_file):
    root_dir = "Dataset2"
    index, image_paths, categories = load_and_index_images(root_dir)
    save_index_and_metadata(index, image_paths, categories, index_file, metadata_file)
else:
    index, image_paths, categories = load_index_and_metadata(index_file, metadata_file)


print(f"Index size: {index.ntotal}")
print(f"Number of image paths: {len(image_paths)}")
print(f"Number of categories: {len(set(categories))}")

# Define Gradio interface
def gradio_interface(image, similarity_threshold, num_display):
    matched_images, similarities, file_names, predicted_category = process_image(image, similarity_threshold)
    
    print(f"Debug: Number of matched images: {len(matched_images)}")
    print(f"Debug: Similarity scores: {similarities}")
    
    perfect_match = None
    similar_products = []
    seen_file_names = set()
    
    highest_similarity = 0
    highest_similarity_match = None
    
    for img, sim, name in zip(matched_images, similarities, file_names):
        print(f"Debug: Processing image {name} with similarity {sim}")
        if sim > highest_similarity:
            highest_similarity = sim
            highest_similarity_match = (img, f"Similarity: {sim*100:.2f}%\nProduct name: {name}")
        
        if sim >= 0.99 and perfect_match is None:
            perfect_match = (img, f"Similarity: {sim*100:.2f}%\nProduct name: {name}")
            seen_file_names.add(name)
            print(f"Debug: Near-perfect match found: {name}")
        elif name not in seen_file_names:
            similar_products.append((img, f"{sim*100:.2f}% - {name}"))
            seen_file_names.add(name)
    
    if perfect_match is None:
        perfect_match = highest_similarity_match
        print(f"Debug: Using highest similarity match: {highest_similarity}")
    
    return (
        f"{predicted_category}",
        perfect_match[0],
        perfect_match[1],
        similar_products[:num_display]
    )

class ImageSearchState:
    def __init__(self):
        self.matched_images = None
        self.similarities = None
        self.file_names = None
        self.predicted_category = None
        self.filtered_products = None

state = ImageSearchState()

def process_uploaded_image(image):
    if image is None:
        return None, None, None, None, gr.Slider(minimum=1, maximum=50, value=10, step=1, label="Set value to display total images")
    
    state.matched_images, state.similarities, state.file_names, state.predicted_category = process_image(image, 0)  # Use 0 to get all matches
    
    max_images = len(state.matched_images)
    updated_num_images_slider = gr.Slider(minimum=1, maximum=max_images, value=min(10, max_images), step=1, label=f"Set value to display total images (max: {max_images})")
    
    return update_results(50, 10)  # Default values

def update_results(similarity_threshold, num_display):
    if state.matched_images is None:
        return None, None, None, None, gr.Slider(minimum=1, maximum=50, value=10, step=1, label="Set value to display total images")
    
    perfect_match = None
    similar_products = []
    seen_file_names = set()
    
    highest_similarity = 0
    highest_similarity_match = None
    
    similarity_threshold = similarity_threshold / 100.0  # Convert to 0-1 range
    
    for img, sim, name in zip(state.matched_images, state.similarities, state.file_names):
        if sim > highest_similarity:
            highest_similarity = sim
            highest_similarity_match = (img, f"Similarity: {sim*100:.2f}%\nProduct name: {name}")
        
        if sim >= 0.99 and perfect_match is None:
            perfect_match = (img, f"Similarity: {sim*100:.2f}%\nProduct name: {name}")
            seen_file_names.add(name)
        elif sim >= similarity_threshold and name not in seen_file_names:
            similar_products.append((img, f"{sim*100:.2f}% - {name}"))
            seen_file_names.add(name)
    
    if perfect_match is None:
        perfect_match = highest_similarity_match
    
    state.filtered_products = similar_products
    max_images = len(similar_products)
    updated_num_images_slider = gr.Slider(minimum=1, maximum=max_images, value=min(num_display, max_images), step=1, label=f"Set value to display total images (max: {max_images})")
    
    return (
        f"{state.predicted_category}",
        perfect_match[0] if perfect_match else None,
        perfect_match[1] if perfect_match else "No perfect match found",
        similar_products[:num_display],
        updated_num_images_slider
    )

def update_display(num_display):
    time.sleep(1)  # 1 second delay
    return state.filtered_products[:num_display]

with gr.Blocks() as demo:
    gr.Markdown("# Product Image Search")

    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(type="pil", label="Upload Product Image")
        with gr.Column(scale=1):
            similarity_slider = gr.Slider(minimum=0, maximum=100, value=50, step=1, label="Set percentage to get similar images")
            num_images_slider = gr.Slider(minimum=1, maximum=50, value=10, step=1, label="Set value to display total images")

    gr.Markdown("## Product Category")
    with gr.Row():
        category_output = gr.Textbox(label="Detected Category", placeholder="Detected product category will appear here.")

    gr.Markdown("## 100% Match Result")
    with gr.Row():
        with gr.Column(scale=1):
            perfect_match_image = gr.Image(label="100% Matched Image", show_label=False)
        with gr.Column(scale=1):
            perfect_match_info = gr.Textbox(label="Match Information", placeholder="Details of the 100% match will appear here.")

    gr.Markdown("## Similar Images")
    similar_products_gallery = gr.Gallery(label="Similar Products", show_label=False, columns=5, rows=None, height="auto", object_fit="contain")

    image_input.change(
        fn=process_uploaded_image,
        inputs=[image_input],
        outputs=[category_output, perfect_match_image, perfect_match_info, similar_products_gallery, num_images_slider]
    )

    similarity_slider.change(
        fn=update_results,
        inputs=[similarity_slider, num_images_slider],
        outputs=[category_output, perfect_match_image, perfect_match_info, similar_products_gallery, num_images_slider]
    )

    num_images_slider.release(
        fn=update_display,
        inputs=[num_images_slider],
        outputs=[similar_products_gallery]
    )

demo.launch()