Fixed vectorstore code and got it working locally
Browse files- Dockerfile +4 -0
- Dockerfile.test +4 -0
- backend/app/vectorstore.py +79 -44
- backend/app/vectorstore_helpers.py +6 -2
- backend/tests/test_vectorstore.py +70 -2
- pyproject.toml +2 -1
- test_vectorstore_code.ipynb +20 -0
Dockerfile
CHANGED
|
@@ -15,6 +15,10 @@ WORKDIR /app
|
|
| 15 |
|
| 16 |
RUN mkdir -p /app/static/data
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
# Create a non-root user
|
| 19 |
RUN useradd -m -u 1000 user
|
| 20 |
RUN chown -R user:user /app
|
|
|
|
| 15 |
|
| 16 |
RUN mkdir -p /app/static/data
|
| 17 |
|
| 18 |
+
# # Add DNS configuration
|
| 19 |
+
# RUN echo "nameserver 8.8.8.8" > /etc/resolv.conf && \
|
| 20 |
+
# echo "nameserver 8.8.4.4" >> /etc/resolv.conf
|
| 21 |
+
|
| 22 |
# Create a non-root user
|
| 23 |
RUN useradd -m -u 1000 user
|
| 24 |
RUN chown -R user:user /app
|
Dockerfile.test
CHANGED
|
@@ -11,6 +11,10 @@ RUN npm run build
|
|
| 11 |
# Use Python image with uv pre-installed
|
| 12 |
FROM ghcr.io/astral-sh/uv:python3.12-bookworm-slim
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# Set up Node.js and npm
|
| 15 |
RUN apt-get update && apt-get install -y \
|
| 16 |
curl \
|
|
|
|
| 11 |
# Use Python image with uv pre-installed
|
| 12 |
FROM ghcr.io/astral-sh/uv:python3.12-bookworm-slim
|
| 13 |
|
| 14 |
+
# Add DNS configuration
|
| 15 |
+
# RUN echo "nameserver 8.8.8.8" > /etc/resolv.conf && \
|
| 16 |
+
# echo "nameserver 8.8.4.4" >> /etc/resolv.conf
|
| 17 |
+
|
| 18 |
# Set up Node.js and npm
|
| 19 |
RUN apt-get update && apt-get install -y \
|
| 20 |
curl \
|
backend/app/vectorstore.py
CHANGED
|
@@ -8,11 +8,10 @@ import os
|
|
| 8 |
import requests
|
| 9 |
import nltk
|
| 10 |
import logging
|
| 11 |
-
import
|
| 12 |
-
import hashlib
|
| 13 |
|
| 14 |
-
from typing import Optional, List
|
| 15 |
-
from
|
| 16 |
from langchain_openai.embeddings import OpenAIEmbeddings
|
| 17 |
from langchain_community.document_loaders import DirectoryLoader
|
| 18 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
@@ -39,9 +38,8 @@ logger = logging.getLogger(__name__)
|
|
| 39 |
|
| 40 |
# Global variable to store the singleton instance
|
| 41 |
_qdrant_client_instance: Optional[QdrantClient] = None
|
| 42 |
-
_vector_db_instance: Optional[
|
| 43 |
-
|
| 44 |
-
# to match the new embedding model.
|
| 45 |
_embedding_model_id: str = None
|
| 46 |
|
| 47 |
|
|
@@ -59,15 +57,25 @@ def _get_qdrant_client():
|
|
| 59 |
|
| 60 |
os.makedirs(LOCAL_QDRANT_PATH, exist_ok=True)
|
| 61 |
_qdrant_client_instance = QdrantClient(path=LOCAL_QDRANT_PATH)
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
return _qdrant_client_instance
|
| 68 |
|
| 69 |
|
| 70 |
-
def _initialize_vector_db(
|
| 71 |
os.makedirs("static/data", exist_ok=True)
|
| 72 |
|
| 73 |
html_path = "static/data/langchain_rag_tutorial.html"
|
|
@@ -91,7 +99,6 @@ def _initialize_vector_db(embedding_model):
|
|
| 91 |
category="documentation",
|
| 92 |
version="1.0",
|
| 93 |
language="en",
|
| 94 |
-
original_source=doc.metadata.get("source"),
|
| 95 |
)
|
| 96 |
for doc in documents
|
| 97 |
]
|
|
@@ -99,11 +106,9 @@ def _initialize_vector_db(embedding_model):
|
|
| 99 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 100 |
split_chunks = text_splitter.split_documents(enriched_docs)
|
| 101 |
|
| 102 |
-
client = _get_qdrant_client()
|
| 103 |
store_documents(
|
| 104 |
split_chunks,
|
| 105 |
PROBLEMS_REFERENCE_COLLECTION_NAME,
|
| 106 |
-
client,
|
| 107 |
)
|
| 108 |
|
| 109 |
|
|
@@ -134,32 +139,38 @@ def get_all_unique_source_docs_in_collection(
|
|
| 134 |
def store_documents(
|
| 135 |
documents: List[Document],
|
| 136 |
collection_name: str,
|
| 137 |
-
|
| 138 |
-
embedding_model=None,
|
| 139 |
):
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
if not check_collection_exists(client, collection_name):
|
| 144 |
-
client.create_collection(
|
| 145 |
-
collection_name,
|
| 146 |
-
vectors_config=VectorParams(
|
| 147 |
-
size=DEFAULT_VECTOR_DIMENSIONS, distance=DEFAULT_VECTOR_DISTANCE
|
| 148 |
-
),
|
| 149 |
-
)
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
)
|
| 154 |
|
| 155 |
-
|
| 156 |
documents=documents,
|
| 157 |
ids=[get_document_hash_as_uuid(doc) for doc in documents],
|
| 158 |
)
|
| 159 |
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
"""
|
| 164 |
Factory function that returns a singleton instance of the vector database.
|
| 165 |
Creates the instance if it doesn't exist.
|
|
@@ -167,21 +178,45 @@ def get_vector_db(embedding_model_id: str = None) -> Qdrant:
|
|
| 167 |
global _vector_db_instance
|
| 168 |
|
| 169 |
if _vector_db_instance is None:
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
embedding_model = OpenAIEmbeddings(model=DEFAULT_EMBEDDING_MODEL_ID)
|
| 173 |
-
else:
|
| 174 |
-
embedding_model = HuggingFaceEmbeddings(model_name=embedding_model_id)
|
| 175 |
|
| 176 |
client = _get_qdrant_client()
|
| 177 |
-
collection_info = client.get_collection(PROBLEMS_REFERENCE_COLLECTION_NAME)
|
| 178 |
-
if collection_info.vectors_count is None or collection_info.vectors_count == 0:
|
| 179 |
-
_initialize_vector_db(embedding_model)
|
| 180 |
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
collection_name=PROBLEMS_REFERENCE_COLLECTION_NAME,
|
| 183 |
-
|
| 184 |
-
client=client,
|
| 185 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
return _vector_db_instance
|
|
|
|
| 8 |
import requests
|
| 9 |
import nltk
|
| 10 |
import logging
|
| 11 |
+
import requests
|
|
|
|
| 12 |
|
| 13 |
+
from typing import Optional, List, Union
|
| 14 |
+
from langchain_qdrant import QdrantVectorStore
|
| 15 |
from langchain_openai.embeddings import OpenAIEmbeddings
|
| 16 |
from langchain_community.document_loaders import DirectoryLoader
|
| 17 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
| 38 |
|
| 39 |
# Global variable to store the singleton instance
|
| 40 |
_qdrant_client_instance: Optional[QdrantClient] = None
|
| 41 |
+
_vector_db_instance: Optional[QdrantVectorStore] = None
|
| 42 |
+
_embedding_model: Optional[Union[OpenAIEmbeddings, HuggingFaceEmbeddings]] = None
|
|
|
|
| 43 |
_embedding_model_id: str = None
|
| 44 |
|
| 45 |
|
|
|
|
| 57 |
|
| 58 |
os.makedirs(LOCAL_QDRANT_PATH, exist_ok=True)
|
| 59 |
_qdrant_client_instance = QdrantClient(path=LOCAL_QDRANT_PATH)
|
| 60 |
+
# _qdrant_client_instance = QdrantClient(":memory:")
|
| 61 |
+
return _qdrant_client_instance
|
| 62 |
|
| 63 |
+
logger.info(
|
| 64 |
+
f"Attempting to connect to Qdrant at {os.environ.get("QDRANT_URL")}"
|
| 65 |
+
)
|
| 66 |
+
try:
|
| 67 |
+
_qdrant_client_instance = QdrantClient(
|
| 68 |
+
url=os.environ.get("QDRANT_URL"),
|
| 69 |
+
api_key=os.environ.get("QDRANT_API_KEY"),
|
| 70 |
+
)
|
| 71 |
+
logger.info("Successfully connected to Qdrant Cloud")
|
| 72 |
+
except Exception as e:
|
| 73 |
+
logger.error(f"Failed to connect to Qdrant Cloud: {str(e)}")
|
| 74 |
+
raise e
|
| 75 |
return _qdrant_client_instance
|
| 76 |
|
| 77 |
|
| 78 |
+
def _initialize_vector_db():
|
| 79 |
os.makedirs("static/data", exist_ok=True)
|
| 80 |
|
| 81 |
html_path = "static/data/langchain_rag_tutorial.html"
|
|
|
|
| 99 |
category="documentation",
|
| 100 |
version="1.0",
|
| 101 |
language="en",
|
|
|
|
| 102 |
)
|
| 103 |
for doc in documents
|
| 104 |
]
|
|
|
|
| 106 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 107 |
split_chunks = text_splitter.split_documents(enriched_docs)
|
| 108 |
|
|
|
|
| 109 |
store_documents(
|
| 110 |
split_chunks,
|
| 111 |
PROBLEMS_REFERENCE_COLLECTION_NAME,
|
|
|
|
| 112 |
)
|
| 113 |
|
| 114 |
|
|
|
|
| 139 |
def store_documents(
|
| 140 |
documents: List[Document],
|
| 141 |
collection_name: str,
|
| 142 |
+
embedding_model_id: str = None,
|
|
|
|
| 143 |
):
|
| 144 |
+
global _vector_db_instance
|
| 145 |
+
assert _vector_db_instance is not None, "Vector database instance not initialized"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
embedding_model = get_embedding_model(embedding_model_id)
|
| 148 |
+
client = _get_qdrant_client()
|
|
|
|
| 149 |
|
| 150 |
+
_vector_db_instance.add_documents(
|
| 151 |
documents=documents,
|
| 152 |
ids=[get_document_hash_as_uuid(doc) for doc in documents],
|
| 153 |
)
|
| 154 |
|
| 155 |
|
| 156 |
+
def get_embedding_model(embedding_model_id: str = None):
|
| 157 |
+
"""
|
| 158 |
+
Factory function that returns a singleton instance of the embedding model.
|
| 159 |
+
Creates the instance if it doesn't exist.
|
| 160 |
+
"""
|
| 161 |
+
global _embedding_model, _embedding_model_id
|
| 162 |
+
|
| 163 |
+
if _embedding_model is None or embedding_model_id != _embedding_model_id:
|
| 164 |
+
if embedding_model_id is None:
|
| 165 |
+
_embedding_model = OpenAIEmbeddings(model=DEFAULT_EMBEDDING_MODEL_ID)
|
| 166 |
+
else:
|
| 167 |
+
_embedding_model = HuggingFaceEmbeddings(model_name=embedding_model_id)
|
| 168 |
+
_embedding_model_id = embedding_model_id
|
| 169 |
+
|
| 170 |
+
return _embedding_model
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def get_vector_db(embedding_model_id: str = None) -> QdrantVectorStore:
|
| 174 |
"""
|
| 175 |
Factory function that returns a singleton instance of the vector database.
|
| 176 |
Creates the instance if it doesn't exist.
|
|
|
|
| 178 |
global _vector_db_instance
|
| 179 |
|
| 180 |
if _vector_db_instance is None:
|
| 181 |
+
need_to_initialize_db = False
|
| 182 |
+
embedding_model = get_embedding_model(embedding_model_id)
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
client = _get_qdrant_client()
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
+
if not check_collection_exists(client, PROBLEMS_REFERENCE_COLLECTION_NAME):
|
| 187 |
+
client.create_collection(
|
| 188 |
+
PROBLEMS_REFERENCE_COLLECTION_NAME,
|
| 189 |
+
vectors_config=VectorParams(
|
| 190 |
+
size=DEFAULT_VECTOR_DIMENSIONS, distance=DEFAULT_VECTOR_DISTANCE
|
| 191 |
+
),
|
| 192 |
+
)
|
| 193 |
+
need_to_initialize_db = True
|
| 194 |
+
|
| 195 |
+
os.makedirs(LOCAL_QDRANT_PATH, exist_ok=True)
|
| 196 |
+
|
| 197 |
+
# TODO temp. Need to close and reopen client to avoid RuntimeError: Storage folder /data/qdrant_db is already accessed by another instance of Qdrant client. If you require concurrent access, use Qdrant server instead.
|
| 198 |
+
# Better solution is to use Qdrant server instead of local file storage, but I'm not sure I can run Docker Compose in Hugging Face Spaces.
|
| 199 |
+
client.close()
|
| 200 |
+
_vector_db_instance = QdrantVectorStore.from_existing_collection(
|
| 201 |
+
# client=client,
|
| 202 |
+
# TODO temp. If this works, go file bug with langchain-qdrant
|
| 203 |
+
# location=":memory:",
|
| 204 |
+
path=LOCAL_QDRANT_PATH,
|
| 205 |
collection_name=PROBLEMS_REFERENCE_COLLECTION_NAME,
|
| 206 |
+
embedding=embedding_model,
|
|
|
|
| 207 |
)
|
| 208 |
+
# TODO super hacky, but maybe I don't need client anymore? I'll just try to use QdrantVectorStore
|
| 209 |
+
# just really trying not to instantiate a new client to access local path
|
| 210 |
+
# because as long as QdrantVectorStore is instantiated, it will use the same client it created on the backend
|
| 211 |
+
client = None
|
| 212 |
+
|
| 213 |
+
if need_to_initialize_db:
|
| 214 |
+
_initialize_vector_db()
|
| 215 |
+
|
| 216 |
+
# vector_store = QdrantVectorStore(
|
| 217 |
+
# client=client,
|
| 218 |
+
# collection_name=PROBLEMS_REFERENCE_COLLECTION_NAME,
|
| 219 |
+
# embedding=embedding_model,
|
| 220 |
+
# )
|
| 221 |
|
| 222 |
return _vector_db_instance
|
backend/app/vectorstore_helpers.py
CHANGED
|
@@ -7,8 +7,12 @@ from typing import List
|
|
| 7 |
|
| 8 |
|
| 9 |
def check_collection_exists(client: QdrantClient, collection_name: str) -> bool:
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
def get_document_hash_as_uuid(doc):
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
def check_collection_exists(client: QdrantClient, collection_name: str) -> bool:
|
| 10 |
+
try:
|
| 11 |
+
# this is dumb, but it works. Not sure why get_collection raises an error if the collection doesn't exist.
|
| 12 |
+
client.get_collection(collection_name) is not None
|
| 13 |
+
return True
|
| 14 |
+
except ValueError:
|
| 15 |
+
return False
|
| 16 |
|
| 17 |
|
| 18 |
def get_document_hash_as_uuid(doc):
|
backend/tests/test_vectorstore.py
CHANGED
|
@@ -1,6 +1,10 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from langchain.schema import Document
|
| 3 |
-
from backend.app.vectorstore import get_vector_db
|
| 4 |
|
| 5 |
|
| 6 |
def test_directory_creation():
|
|
@@ -44,5 +48,69 @@ def test_vector_db_singleton():
|
|
| 44 |
instance1 = get_vector_db()
|
| 45 |
instance2 = get_vector_db()
|
| 46 |
|
| 47 |
-
# Verify they are the same object
|
| 48 |
assert instance1 is instance2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import socket
|
| 3 |
+
import pytest
|
| 4 |
+
import requests
|
| 5 |
+
|
| 6 |
from langchain.schema import Document
|
| 7 |
+
from backend.app.vectorstore import get_vector_db, _get_qdrant_client
|
| 8 |
|
| 9 |
|
| 10 |
def test_directory_creation():
|
|
|
|
| 48 |
instance1 = get_vector_db()
|
| 49 |
instance2 = get_vector_db()
|
| 50 |
|
|
|
|
| 51 |
assert instance1 is instance2
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def test_qdrant_cloud_connection():
|
| 55 |
+
"""Test basic connectivity to Qdrant Cloud"""
|
| 56 |
+
# Skip test if not configured for cloud
|
| 57 |
+
if not os.environ.get("QDRANT_URL") or not os.environ.get("QDRANT_API_KEY"):
|
| 58 |
+
|
| 59 |
+
pytest.skip("Qdrant Cloud credentials not configured")
|
| 60 |
+
|
| 61 |
+
try:
|
| 62 |
+
# Print URL for debugging (excluding any path components)
|
| 63 |
+
qdrant_url = os.environ.get("QDRANT_URL", "")
|
| 64 |
+
print(f"Attempting to connect to Qdrant at: {qdrant_url}")
|
| 65 |
+
|
| 66 |
+
# Try to parse the URL components
|
| 67 |
+
from urllib.parse import urlparse
|
| 68 |
+
|
| 69 |
+
parsed_url = urlparse(qdrant_url)
|
| 70 |
+
print(f"Scheme: {parsed_url.scheme}")
|
| 71 |
+
print(f"Hostname: {parsed_url.hostname}")
|
| 72 |
+
print(f"Port: {parsed_url.port}")
|
| 73 |
+
print(f"Path: {parsed_url.path}")
|
| 74 |
+
|
| 75 |
+
client = _get_qdrant_client()
|
| 76 |
+
client.get_collections()
|
| 77 |
+
assert True, "Connection successful"
|
| 78 |
+
except Exception as e:
|
| 79 |
+
assert False, f"Failed to connect to Qdrant Cloud: {str(e)}"
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def test_external_connectivity():
|
| 83 |
+
"""Test basic external connectivity and DNS resolution.
|
| 84 |
+
Test needed since Docker gave an issue with this before. Couldn't resolve Qdrant host.
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
# Skip test if not configured for cloud
|
| 88 |
+
if not os.environ.get("QDRANT_URL") or not os.environ.get("QDRANT_API_KEY"):
|
| 89 |
+
pytest.skip("Qdrant Cloud credentials not configured")
|
| 90 |
+
|
| 91 |
+
# Test DNS resolution first
|
| 92 |
+
try:
|
| 93 |
+
# Try to resolve google.com
|
| 94 |
+
google_ip = socket.gethostbyname("google.com")
|
| 95 |
+
print(f"Successfully resolved google.com to {google_ip}")
|
| 96 |
+
|
| 97 |
+
# If we have Qdrant URL, try to resolve that too
|
| 98 |
+
qdrant_url = os.environ.get("QDRANT_URL", "")
|
| 99 |
+
if qdrant_url:
|
| 100 |
+
qdrant_host = (
|
| 101 |
+
qdrant_url.replace("https://", "").replace("http://", "").split("/")[0]
|
| 102 |
+
)
|
| 103 |
+
print(f"Qdrant host: {qdrant_host}")
|
| 104 |
+
qdrant_ip = socket.gethostbyname(qdrant_host)
|
| 105 |
+
print(f"Successfully resolved Qdrant host {qdrant_host}")
|
| 106 |
+
except socket.gaierror as e:
|
| 107 |
+
assert False, f"DNS resolution failed: {str(e)}"
|
| 108 |
+
|
| 109 |
+
# Test HTTP connectivity
|
| 110 |
+
try:
|
| 111 |
+
response = requests.get("https://www.google.com", timeout=5)
|
| 112 |
+
assert (
|
| 113 |
+
response.status_code == 200
|
| 114 |
+
), "Expected successful response from google.com"
|
| 115 |
+
except requests.exceptions.RequestException as e:
|
| 116 |
+
assert False, f"Failed to connect to google.com: {str(e)}"
|
pyproject.toml
CHANGED
|
@@ -24,7 +24,7 @@ dependencies = [
|
|
| 24 |
"pytest-dotenv>=0.5.2",
|
| 25 |
"unstructured",
|
| 26 |
"haystack-ai==2.0.1",
|
| 27 |
-
"qdrant-client==1.
|
| 28 |
"qdrant-haystack==3.3.1",
|
| 29 |
"ipykernel",
|
| 30 |
"sentence-transformers>=3.4.1",
|
|
@@ -35,6 +35,7 @@ dependencies = [
|
|
| 35 |
"black>=25.1.0",
|
| 36 |
"scrapy==2.12.0",
|
| 37 |
"fastembed==0.6.0",
|
|
|
|
| 38 |
]
|
| 39 |
|
| 40 |
[tool.setuptools]
|
|
|
|
| 24 |
"pytest-dotenv>=0.5.2",
|
| 25 |
"unstructured",
|
| 26 |
"haystack-ai==2.0.1",
|
| 27 |
+
"qdrant-client==1.13.3",
|
| 28 |
"qdrant-haystack==3.3.1",
|
| 29 |
"ipykernel",
|
| 30 |
"sentence-transformers>=3.4.1",
|
|
|
|
| 35 |
"black>=25.1.0",
|
| 36 |
"scrapy==2.12.0",
|
| 37 |
"fastembed==0.6.0",
|
| 38 |
+
"langchain-qdrant==0.2.0",
|
| 39 |
]
|
| 40 |
|
| 41 |
[tool.setuptools]
|
test_vectorstore_code.ipynb
CHANGED
|
@@ -100,6 +100,26 @@
|
|
| 100 |
"collection_info = client.get_collection(PROBLEMS_REFERENCE_COLLECTION_NAME)"
|
| 101 |
]
|
| 102 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
{
|
| 104 |
"cell_type": "code",
|
| 105 |
"execution_count": 7,
|
|
|
|
| 100 |
"collection_info = client.get_collection(PROBLEMS_REFERENCE_COLLECTION_NAME)"
|
| 101 |
]
|
| 102 |
},
|
| 103 |
+
{
|
| 104 |
+
"cell_type": "code",
|
| 105 |
+
"execution_count": 88,
|
| 106 |
+
"metadata": {},
|
| 107 |
+
"outputs": [
|
| 108 |
+
{
|
| 109 |
+
"data": {
|
| 110 |
+
"text/plain": [
|
| 111 |
+
"CollectionsResponse(collections=[])"
|
| 112 |
+
]
|
| 113 |
+
},
|
| 114 |
+
"execution_count": 88,
|
| 115 |
+
"metadata": {},
|
| 116 |
+
"output_type": "execute_result"
|
| 117 |
+
}
|
| 118 |
+
],
|
| 119 |
+
"source": [
|
| 120 |
+
"client.get_collections()"
|
| 121 |
+
]
|
| 122 |
+
},
|
| 123 |
{
|
| 124 |
"cell_type": "code",
|
| 125 |
"execution_count": 7,
|