Added simple RAG component to web app
Browse files- Dockerfile +2 -0
- backend/app/problem_generator.py +53 -16
- backend/tests/test_api.py +1 -1
- test_problem_gen_rag.ipynb +153 -0
Dockerfile
CHANGED
|
@@ -13,6 +13,8 @@ FROM ghcr.io/astral-sh/uv:python3.12-bookworm-slim
|
|
| 13 |
|
| 14 |
WORKDIR /app
|
| 15 |
|
|
|
|
|
|
|
| 16 |
# Create a non-root user
|
| 17 |
RUN useradd -m -u 1000 user
|
| 18 |
RUN chown -R user:user /app
|
|
|
|
| 13 |
|
| 14 |
WORKDIR /app
|
| 15 |
|
| 16 |
+
RUN mkdir -p /app/static/data
|
| 17 |
+
|
| 18 |
# Create a non-root user
|
| 19 |
RUN useradd -m -u 1000 user
|
| 20 |
RUN chown -R user:user /app
|
backend/app/problem_generator.py
CHANGED
|
@@ -1,24 +1,61 @@
|
|
| 1 |
from typing import List
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
from langchain.agents import AgentExecutor, create_openai_functions_agent
|
| 5 |
-
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
| 6 |
-
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 7 |
-
from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser
|
| 8 |
from langchain_openai import ChatOpenAI
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
class ProblemGenerator:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
def generate_problems(self, query: str) -> List[str]:
|
| 13 |
"""
|
| 14 |
-
Generate problems based on the user's query.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
"""
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
"How do you install this tool?",
|
| 20 |
-
"What are the key components?",
|
| 21 |
-
"Explain the basic workflow",
|
| 22 |
-
"What are the best practices?"
|
| 23 |
-
]
|
| 24 |
-
return sample_questions
|
|
|
|
| 1 |
from typing import List
|
| 2 |
+
import json
|
| 3 |
|
| 4 |
+
from langchain_core.prompts import ChatPromptTemplate
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from langchain_openai import ChatOpenAI
|
| 6 |
+
from langchain_core.runnables import RunnablePassthrough
|
| 7 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 8 |
+
from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser
|
| 9 |
+
from backend.app.vectorstore import get_vector_db
|
| 10 |
|
| 11 |
class ProblemGenerator:
|
| 12 |
+
def __init__(self):
|
| 13 |
+
# Initialize prompts
|
| 14 |
+
self.system_role_prompt = """
|
| 15 |
+
You are a helpful assistant that generates questions based on a given context.
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
self.user_role_prompt = """
|
| 19 |
+
Based on the following context about {query}, generate 5 relevant and specific questions.
|
| 20 |
+
Make sure the questions can be answered using only the provided context.
|
| 21 |
+
|
| 22 |
+
Context: {context}
|
| 23 |
+
|
| 24 |
+
Generate 5 questions that test understanding of the material in the context.
|
| 25 |
+
|
| 26 |
+
Return only a json object with the following format:
|
| 27 |
+
{{
|
| 28 |
+
"questions": ["question1", "question2", "question3", "question4", "question5"]
|
| 29 |
+
}}
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
# Initialize chain components
|
| 33 |
+
self.chat_prompt = ChatPromptTemplate.from_messages([
|
| 34 |
+
("system", self.system_role_prompt),
|
| 35 |
+
("user", self.user_role_prompt)
|
| 36 |
+
])
|
| 37 |
+
|
| 38 |
+
self.llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)
|
| 39 |
+
self.retriever = get_vector_db().as_retriever(search_kwargs={"k": 2})
|
| 40 |
+
|
| 41 |
+
# Build the RAG chain
|
| 42 |
+
self.rag_chain = (
|
| 43 |
+
{"context": self.retriever, "query": RunnablePassthrough()}
|
| 44 |
+
| self.chat_prompt
|
| 45 |
+
| self.llm
|
| 46 |
+
| StrOutputParser()
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
def generate_problems(self, query: str) -> List[str]:
|
| 50 |
"""
|
| 51 |
+
Generate problems based on the user's query using RAG.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
query (str): The topic to generate questions about
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
List[str]: A list of generated questions
|
| 58 |
"""
|
| 59 |
+
raw_result = self.rag_chain.invoke(query)
|
| 60 |
+
result = json.loads(raw_result)
|
| 61 |
+
return result["questions"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
backend/tests/test_api.py
CHANGED
|
@@ -14,7 +14,7 @@ def test_crawl_endpoint():
|
|
| 14 |
def test_problems_endpoint():
|
| 15 |
response = client.post(
|
| 16 |
"/api/problems/",
|
| 17 |
-
json={"user_query": "
|
| 18 |
)
|
| 19 |
assert response.status_code == 200
|
| 20 |
assert "Problems" in response.json()
|
|
|
|
| 14 |
def test_problems_endpoint():
|
| 15 |
response = client.post(
|
| 16 |
"/api/problems/",
|
| 17 |
+
json={"user_query": "RAG"}
|
| 18 |
)
|
| 19 |
assert response.status_code == 200
|
| 20 |
assert "Problems" in response.json()
|
test_problem_gen_rag.ipynb
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [
|
| 8 |
+
{
|
| 9 |
+
"name": "stderr",
|
| 10 |
+
"output_type": "stream",
|
| 11 |
+
"text": [
|
| 12 |
+
"[nltk_data] Downloading package punkt_tab to\n",
|
| 13 |
+
"[nltk_data] /Users/ryanrodriguez/nltk_data...\n",
|
| 14 |
+
"[nltk_data] Package punkt_tab is already up-to-date!\n",
|
| 15 |
+
"[nltk_data] Downloading package averaged_perceptron_tagger_eng to\n",
|
| 16 |
+
"[nltk_data] /Users/ryanrodriguez/nltk_data...\n",
|
| 17 |
+
"[nltk_data] Package averaged_perceptron_tagger_eng is already up-to-\n",
|
| 18 |
+
"[nltk_data] date!\n"
|
| 19 |
+
]
|
| 20 |
+
}
|
| 21 |
+
],
|
| 22 |
+
"source": [
|
| 23 |
+
"from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser\n",
|
| 24 |
+
"from langchain_core.prompts import ChatPromptTemplate\n",
|
| 25 |
+
"from langchain_openai import ChatOpenAI\n",
|
| 26 |
+
"from langchain.chains import create_retrieval_chain\n",
|
| 27 |
+
"from langchain.chains.combine_documents import create_stuff_documents_chain\n",
|
| 28 |
+
"from backend.app.vectorstore import get_vector_db"
|
| 29 |
+
]
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"cell_type": "code",
|
| 33 |
+
"execution_count": 17,
|
| 34 |
+
"metadata": {},
|
| 35 |
+
"outputs": [],
|
| 36 |
+
"source": [
|
| 37 |
+
"system_role_prompt = \"\"\"\n",
|
| 38 |
+
" You are a helpful assistant that generates questions based on a given context.\n",
|
| 39 |
+
"\"\"\"\n",
|
| 40 |
+
"\n",
|
| 41 |
+
"user_role_prompt = \"\"\"\n",
|
| 42 |
+
" Based on the following context about {query}, generate 5 relevant and specific questions.\n",
|
| 43 |
+
" Make sure the questions can be answered using only the provided context.\n",
|
| 44 |
+
"\n",
|
| 45 |
+
" Context: {context}\n",
|
| 46 |
+
"\n",
|
| 47 |
+
" Generate 5 questions that test understanding of the material in the context.\n",
|
| 48 |
+
" \n",
|
| 49 |
+
" Return only a json object with the following format:\n",
|
| 50 |
+
" {{\n",
|
| 51 |
+
" \"questions\": [\"question1\", \"question2\", \"question3\", \"question4\", \"question5\"]\n",
|
| 52 |
+
" }}\n",
|
| 53 |
+
"\"\"\"\n"
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"cell_type": "code",
|
| 58 |
+
"execution_count": 18,
|
| 59 |
+
"metadata": {},
|
| 60 |
+
"outputs": [],
|
| 61 |
+
"source": [
|
| 62 |
+
"chat_prompt = ChatPromptTemplate.from_messages([\n",
|
| 63 |
+
" (\"system\", system_role_prompt),\n",
|
| 64 |
+
" (\"user\", user_role_prompt)\n",
|
| 65 |
+
"])\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"openai_chat_model = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0.7)\n",
|
| 68 |
+
"\n",
|
| 69 |
+
"retriever = get_vector_db().as_retriever(search_kwargs={\"k\": 2})\n"
|
| 70 |
+
]
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"cell_type": "code",
|
| 74 |
+
"execution_count": 19,
|
| 75 |
+
"metadata": {},
|
| 76 |
+
"outputs": [],
|
| 77 |
+
"source": [
|
| 78 |
+
"from langchain_core.runnables import RunnablePassthrough\n",
|
| 79 |
+
"from langchain_core.output_parsers import StrOutputParser\n",
|
| 80 |
+
"\n",
|
| 81 |
+
"simple_rag = (\n",
|
| 82 |
+
" {\"context\": retriever, \"query\": RunnablePassthrough(), \"num_questions\": RunnablePassthrough()}\n",
|
| 83 |
+
" | chat_prompt\n",
|
| 84 |
+
" | openai_chat_model\n",
|
| 85 |
+
" | StrOutputParser()\n",
|
| 86 |
+
")"
|
| 87 |
+
]
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"cell_type": "code",
|
| 91 |
+
"execution_count": 22,
|
| 92 |
+
"metadata": {},
|
| 93 |
+
"outputs": [],
|
| 94 |
+
"source": [
|
| 95 |
+
"raw_result = simple_rag.invoke(\"RAG\")"
|
| 96 |
+
]
|
| 97 |
+
},
|
| 98 |
+
{
|
| 99 |
+
"cell_type": "code",
|
| 100 |
+
"execution_count": 23,
|
| 101 |
+
"metadata": {},
|
| 102 |
+
"outputs": [
|
| 103 |
+
{
|
| 104 |
+
"data": {
|
| 105 |
+
"text/plain": [
|
| 106 |
+
"['What are the two main components of a typical RAG application?',\n",
|
| 107 |
+
" 'What is the purpose of the indexing component in a RAG application?',\n",
|
| 108 |
+
" \"What are the steps involved in the 'Load' phase of indexing?\",\n",
|
| 109 |
+
" 'Why is splitting text into smaller chunks important in the context of RAG applications?',\n",
|
| 110 |
+
" 'How does the retrieval and generation component of a RAG application process user queries?']"
|
| 111 |
+
]
|
| 112 |
+
},
|
| 113 |
+
"execution_count": 23,
|
| 114 |
+
"metadata": {},
|
| 115 |
+
"output_type": "execute_result"
|
| 116 |
+
}
|
| 117 |
+
],
|
| 118 |
+
"source": [
|
| 119 |
+
"import json\n",
|
| 120 |
+
"result = json.loads(raw_result)\n",
|
| 121 |
+
"result[\"questions\"]"
|
| 122 |
+
]
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"cell_type": "code",
|
| 126 |
+
"execution_count": null,
|
| 127 |
+
"metadata": {},
|
| 128 |
+
"outputs": [],
|
| 129 |
+
"source": []
|
| 130 |
+
}
|
| 131 |
+
],
|
| 132 |
+
"metadata": {
|
| 133 |
+
"kernelspec": {
|
| 134 |
+
"display_name": ".venv",
|
| 135 |
+
"language": "python",
|
| 136 |
+
"name": "python3"
|
| 137 |
+
},
|
| 138 |
+
"language_info": {
|
| 139 |
+
"codemirror_mode": {
|
| 140 |
+
"name": "ipython",
|
| 141 |
+
"version": 3
|
| 142 |
+
},
|
| 143 |
+
"file_extension": ".py",
|
| 144 |
+
"mimetype": "text/x-python",
|
| 145 |
+
"name": "python",
|
| 146 |
+
"nbconvert_exporter": "python",
|
| 147 |
+
"pygments_lexer": "ipython3",
|
| 148 |
+
"version": "3.12.0"
|
| 149 |
+
}
|
| 150 |
+
},
|
| 151 |
+
"nbformat": 4,
|
| 152 |
+
"nbformat_minor": 2
|
| 153 |
+
}
|