Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
8fc06b5
1
Parent(s):
c8fc399
feat: Add 3D-MOOD gradio demo.
Browse files
app.py
CHANGED
|
@@ -1,16 +1,175 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
@spaces.GPU
|
| 10 |
-
def
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
-
demo = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
demo.launch()
|
|
|
|
| 1 |
+
"""Gradio Demo for 3D-MOOD."""
|
| 2 |
+
|
| 3 |
import gradio as gr
|
| 4 |
import spaces
|
| 5 |
+
import gc
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
import torch
|
| 10 |
+
from PIL import Image
|
| 11 |
+
|
| 12 |
+
from vis4d.data.transforms.base import compose
|
| 13 |
+
from vis4d.data.transforms.normalize import NormalizeImages
|
| 14 |
+
from vis4d.data.transforms.resize import ResizeImages, ResizeIntrinsics
|
| 15 |
+
from vis4d.data.transforms.to_tensor import ToTensor
|
| 16 |
+
from vis4d.common.ckpt import load_model_checkpoint
|
| 17 |
+
from vis4d.op.fpp.fpn import FPN
|
| 18 |
+
from vis4d.vis.image.functional import imshow_bboxes3d
|
| 19 |
+
|
| 20 |
+
from opendet3d.data.transforms.pad import CenterPadImages, CenterPadIntrinsics
|
| 21 |
+
from opendet3d.data.transforms.resize import GenResizeParameters
|
| 22 |
+
from opendet3d.model.detect3d.grounding_dino_3d import GroundingDINO3D
|
| 23 |
+
from opendet3d.op.base.swin import SwinTransformer
|
| 24 |
+
from opendet3d.op.detect3d.grounding_dino_3d import (
|
| 25 |
+
GroundingDINO3DCoder,
|
| 26 |
+
GroundingDINO3DHead,
|
| 27 |
+
RoI2Det3D,
|
| 28 |
+
UniDepthHead,
|
| 29 |
+
)
|
| 30 |
+
from opendet3d.op.fpp.channel_mapper import ChannelMapper
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def get_3d_mood_swin_base(
|
| 34 |
+
max_per_image: int = 100, score_thres: float = 0.1
|
| 35 |
+
) -> GroundingDINO3D:
|
| 36 |
+
"""Get the config of Swin-Base."""
|
| 37 |
+
basemodel = SwinTransformer(
|
| 38 |
+
convert_weights=True,
|
| 39 |
+
pretrain_img_size=384,
|
| 40 |
+
embed_dims=128,
|
| 41 |
+
depths=[2, 2, 18, 2],
|
| 42 |
+
num_heads=[4, 8, 16, 32],
|
| 43 |
+
window_size=12,
|
| 44 |
+
drop_path_rate=0.3,
|
| 45 |
+
out_indices=(0, 1, 2, 3),
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
neck = ChannelMapper(
|
| 49 |
+
in_channels=[256, 512, 1024],
|
| 50 |
+
out_channels=256,
|
| 51 |
+
num_outs=4,
|
| 52 |
+
kernel_size=1,
|
| 53 |
+
norm="GroupNorm",
|
| 54 |
+
num_groups=32,
|
| 55 |
+
activation=None,
|
| 56 |
+
bias=True,
|
| 57 |
+
)
|
| 58 |
|
| 59 |
+
depth_fpn = FPN(
|
| 60 |
+
in_channels_list=[128, 256, 512, 1024],
|
| 61 |
+
out_channels=256,
|
| 62 |
+
extra_blocks=None,
|
| 63 |
+
start_index=0,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
depth_head = UniDepthHead(input_dims=[256, 256, 256, 256])
|
| 67 |
+
|
| 68 |
+
box_coder = GroundingDINO3DCoder()
|
| 69 |
+
|
| 70 |
+
bbox3d_head = GroundingDINO3DHead(box_coder=box_coder)
|
| 71 |
+
|
| 72 |
+
roi2det3d = RoI2Det3D(max_per_img=max_per_image, score_threshold=score_thres)
|
| 73 |
+
|
| 74 |
+
return GroundingDINO3D(
|
| 75 |
+
basemodel=basemodel,
|
| 76 |
+
neck=neck,
|
| 77 |
+
bbox3d_head=bbox3d_head,
|
| 78 |
+
roi2det3d=roi2det3d,
|
| 79 |
+
fpn=depth_fpn,
|
| 80 |
+
depth_head=depth_head,
|
| 81 |
+
)
|
| 82 |
|
| 83 |
|
| 84 |
@spaces.GPU
|
| 85 |
+
def run_3d_mood(image, fx, fy, cx, cy):
|
| 86 |
+
"""Run 3D-MOOD demo."""
|
| 87 |
+
|
| 88 |
+
gc.collect()
|
| 89 |
+
|
| 90 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 91 |
+
|
| 92 |
+
# Data
|
| 93 |
+
images = image.astype(np.float32)[None, ...]
|
| 94 |
+
intrinsics = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
|
| 95 |
+
|
| 96 |
+
data_dict = {
|
| 97 |
+
"images": images,
|
| 98 |
+
"original_images": images,
|
| 99 |
+
"input_hw": (images.shape[1], images.shape[2]),
|
| 100 |
+
"original_hw": (images.shape[1], images.shape[2]),
|
| 101 |
+
"intrinsics": intrinsics,
|
| 102 |
+
"original_intrinsics": intrinsics,
|
| 103 |
+
}
|
| 104 |
+
# Transform
|
| 105 |
+
preprocess_transforms = compose(
|
| 106 |
+
transforms=[
|
| 107 |
+
GenResizeParameters(shape=(800, 1333)),
|
| 108 |
+
ResizeImages(),
|
| 109 |
+
ResizeIntrinsics(),
|
| 110 |
+
NormalizeImages(),
|
| 111 |
+
CenterPadImages(stride=1, shape=(800, 1333), update_input_hw=True),
|
| 112 |
+
CenterPadIntrinsics(),
|
| 113 |
+
]
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
data = preprocess_transforms([data_dict])[0]
|
| 117 |
+
|
| 118 |
+
# Convert to Tensor
|
| 119 |
+
to_tensor = ToTensor()
|
| 120 |
+
data = to_tensor([data])[0]
|
| 121 |
+
|
| 122 |
+
# Model
|
| 123 |
+
model = get_3d_mood_swin_base().to(device)
|
| 124 |
+
|
| 125 |
+
load_model_checkpoint(
|
| 126 |
+
model,
|
| 127 |
+
weights="https://huggingface.co/RoyYang0714/3D-MOOD/resolve/main/gdino3d_swin-b_120e_omni3d_834c97.pt",
|
| 128 |
+
rev_keys=[(r"^model\.", ""), (r"^module\.", "")],
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
model.eval()
|
| 132 |
+
|
| 133 |
+
# Run predict
|
| 134 |
+
with torch.no_grad():
|
| 135 |
+
boxes, boxes3d, scores, class_ids, depth_maps, categories = model(
|
| 136 |
+
images=data["images"].to(device),
|
| 137 |
+
input_hw=[data["input_hw"]],
|
| 138 |
+
original_hw=[data["original_hw"]],
|
| 139 |
+
intrinsics=data["intrinsics"].to(device)[None],
|
| 140 |
+
padding=[data["padding"]],
|
| 141 |
+
input_texts=["sofa"],
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
# Save the prediction for visualization
|
| 145 |
+
imshow_bboxes3d(
|
| 146 |
+
image=data["original_images"].cpu(),
|
| 147 |
+
boxes3d=[b.cpu() for b in boxes3d],
|
| 148 |
+
intrinsics=data["original_intrinsics"].cpu().numpy(),
|
| 149 |
+
scores=[s.cpu() for s in scores],
|
| 150 |
+
class_ids=[c.cpu() for c in class_ids],
|
| 151 |
+
class_id_mapping={0: "sofa"},
|
| 152 |
+
file_path="./output.png",
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
output = Image.open("./output.png")
|
| 156 |
+
os.remove("./output.png")
|
| 157 |
+
|
| 158 |
+
return output
|
| 159 |
|
| 160 |
|
| 161 |
+
demo = gr.Interface(
|
| 162 |
+
fn=run_3d_mood,
|
| 163 |
+
inputs=[
|
| 164 |
+
gr.Image(),
|
| 165 |
+
"fx",
|
| 166 |
+
"fy",
|
| 167 |
+
"cx",
|
| 168 |
+
"cy",
|
| 169 |
+
],
|
| 170 |
+
examples=["rgb.png", 518.8579, 519.4696, 325.58246, 253.73616],
|
| 171 |
+
outputs="image",
|
| 172 |
+
title="3D-MOOD with Swin-B.",
|
| 173 |
+
description="3D-MOOD: Lifting 2D to 3D for Monocular Open-Set Object Detection",
|
| 174 |
+
)
|
| 175 |
demo.launch()
|