File size: 5,347 Bytes
9b33fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# pylint: disable=duplicate-code
"""YOLOX COCO."""
from __future__ import annotations

from lightning.pytorch.callbacks import ModelCheckpoint

from vis4d.config import class_config
from vis4d.config.typing import ExperimentConfig, ExperimentParameters
from vis4d.data.const import CommonKeys as K
from vis4d.data.io.hdf5 import HDF5Backend
from vis4d.engine.callbacks import EvaluatorCallback, VisualizerCallback
from vis4d.engine.connectors import CallbackConnector, DataConnector
from vis4d.eval.coco import COCODetectEvaluator
from vis4d.vis.image import BoundingBoxVisualizer
from vis4d.zoo.base import (
    get_default_callbacks_cfg,
    get_default_cfg,
    get_default_pl_trainer_cfg,
)
from vis4d.zoo.base.data_connectors import CONN_BBOX_2D_TEST, CONN_BBOX_2D_VIS
from vis4d.zoo.base.models.yolox import (
    get_yolox_callbacks_cfg,
    get_yolox_cfg,
    get_yolox_optimizers_cfg,
)
from vis4d.zoo.yolox.data import CONN_COCO_BBOX_EVAL, get_coco_yolox_cfg

CONN_BBOX_2D_TRAIN = {"images": K.images}


def get_config() -> ExperimentConfig:
    """Returns the YOLOX config dict for the coco detection task.

    Returns:
        ExperimentConfig: The configuration
    """
    ######################################################
    ##                    General Config                ##
    ######################################################
    config = get_default_cfg(exp_name="yolox_s_300e_coco")
    config.checkpoint_period = 15
    config.check_val_every_n_epoch = 10

    # High level hyper parameters
    params = ExperimentParameters()
    params.samples_per_gpu = 8
    params.workers_per_gpu = 4
    params.lr = 0.01
    params.num_epochs = 300
    params.num_classes = 80
    config.params = params

    ######################################################
    ##          Datasets with augmentations             ##
    ######################################################
    data_root = "data/coco"
    train_split = "train2017"
    test_split = "val2017"

    data_backend = class_config(HDF5Backend)

    config.data = get_coco_yolox_cfg(
        data_root=data_root,
        train_split=train_split,
        test_split=test_split,
        data_backend=data_backend,
        samples_per_gpu=params.samples_per_gpu,
        workers_per_gpu=params.workers_per_gpu,
    )

    ######################################################
    ##                  MODEL & LOSS                    ##
    ######################################################
    config.model, config.loss = get_yolox_cfg(params.num_classes, "small")

    ######################################################
    ##                    OPTIMIZERS                    ##
    ######################################################
    num_last_epochs, warmup_epochs = 15, 5
    config.optimizers = get_yolox_optimizers_cfg(
        params.lr, params.num_epochs, warmup_epochs, num_last_epochs
    )

    ######################################################
    ##                  DATA CONNECTOR                  ##
    ######################################################
    config.train_data_connector = class_config(
        DataConnector, key_mapping=CONN_BBOX_2D_TRAIN
    )

    config.test_data_connector = class_config(
        DataConnector, key_mapping=CONN_BBOX_2D_TEST
    )

    ######################################################
    ##                     CALLBACKS                    ##
    ######################################################
    # Logger
    callbacks = get_default_callbacks_cfg(
        refresh_rate=config.log_every_n_steps
    )

    # YOLOX callbacks
    callbacks += get_yolox_callbacks_cfg(
        switch_epoch=params.num_epochs - num_last_epochs
    )

    # Visualizer
    callbacks.append(
        class_config(
            VisualizerCallback,
            visualizer=class_config(
                BoundingBoxVisualizer, vis_freq=100, image_mode="BGR"
            ),
            output_dir=config.output_dir,
            test_connector=class_config(
                CallbackConnector, key_mapping=CONN_BBOX_2D_VIS
            ),
        )
    )

    # Evaluator
    callbacks.append(
        class_config(
            EvaluatorCallback,
            evaluator=class_config(
                COCODetectEvaluator, data_root=data_root, split=test_split
            ),
            metrics_to_eval=["Det"],
            test_connector=class_config(
                CallbackConnector, key_mapping=CONN_COCO_BBOX_EVAL
            ),
        )
    )

    config.callbacks = callbacks

    ######################################################
    ##                     PL CLI                       ##
    ######################################################
    # PL Trainer args
    pl_trainer = get_default_pl_trainer_cfg(config)
    pl_trainer.max_epochs = params.num_epochs
    pl_trainer.check_val_every_n_epoch = config.check_val_every_n_epoch
    pl_trainer.checkpoint_callback = class_config(
        ModelCheckpoint,
        dirpath=config.get_ref("output_dir") + "/checkpoints",
        verbose=True,
        save_last=True,
        save_on_train_epoch_end=True,
        every_n_epochs=config.checkpoint_period,
        save_top_k=3,
        mode="max",
        monitor="step",
    )
    pl_trainer.wandb = True
    config.pl_trainer = pl_trainer

    return config.value_mode()