File size: 6,435 Bytes
9b33fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# pylint: disable=duplicate-code
"""RetinaNet COCO training example."""
from __future__ import annotations

from torch.optim.lr_scheduler import LinearLR, MultiStepLR
from torch.optim.sgd import SGD

from vis4d.config import class_config
from vis4d.config.typing import ExperimentConfig, ExperimentParameters
from vis4d.data.io.hdf5 import HDF5Backend
from vis4d.engine.callbacks import EvaluatorCallback, VisualizerCallback
from vis4d.engine.connectors import (
    CallbackConnector,
    DataConnector,
    LossConnector,
)
from vis4d.engine.loss_module import LossModule
from vis4d.eval.coco import COCODetectEvaluator
from vis4d.model.detect.retinanet import RetinaNet
from vis4d.op.box.encoder import DeltaXYWHBBoxEncoder
from vis4d.op.detect.retinanet import (
    RetinaNetHeadLoss,
    get_default_anchor_generator,
)
from vis4d.vis.image import BoundingBoxVisualizer
from vis4d.zoo.base import (
    get_default_callbacks_cfg,
    get_default_cfg,
    get_default_pl_trainer_cfg,
    get_lr_scheduler_cfg,
    get_optimizer_cfg,
)
from vis4d.zoo.base.data_connectors import (
    CONN_BBOX_2D_VIS,
    CONN_BOX_LOSS_2D,
    CONN_IMAGES_TEST,
    CONN_IMAGES_TRAIN,
)
from vis4d.zoo.base.datasets.coco import (
    CONN_COCO_BBOX_EVAL,
    get_coco_detection_cfg,
)


def get_config() -> ExperimentConfig:
    """Returns the RetinaNet config dict for the coco detection task.

    This is an example that shows how to set up a training experiment for the
    COCO detection task.

    Note that the high level params are exposed in the config. This allows
    to easily change them from the command line.
    E.g.:
    >>> python -m vis4d.engine.run fit --config vis4d/zoo/retinanet/retinanet_rcnn_coco.py --config.num_epochs 100 --config.params.lr 0.001

    Returns:
        ExperimentConfig: The configuration
    """
    ######################################################
    ##                    General Config                ##
    ######################################################
    config = get_default_cfg(exp_name="retinanet_r50_fpn_coco")

    # High level hyper parameters
    params = ExperimentParameters()
    params.samples_per_gpu = 2
    params.workers_per_gpu = 2
    params.lr = 0.01
    params.num_epochs = 12
    params.num_classes = 80
    config.params = params

    ######################################################
    ##          Datasets with augmentations             ##
    ######################################################
    data_root = "data/coco"
    train_split = "train2017"
    test_split = "val2017"

    data_backend = class_config(HDF5Backend)

    config.data = get_coco_detection_cfg(
        data_root=data_root,
        train_split=train_split,
        test_split=test_split,
        data_backend=data_backend,
        samples_per_gpu=params.samples_per_gpu,
        workers_per_gpu=params.workers_per_gpu,
    )

    ######################################################
    ##                  MODEL & LOSS                    ##
    ######################################################
    config.model = class_config(
        RetinaNet,
        num_classes=params.num_classes,
        # weights="mmdet",
    )

    box_encoder = class_config(
        DeltaXYWHBBoxEncoder,
        target_means=(0.0, 0.0, 0.0, 0.0),
        target_stds=(1.0, 1.0, 1.0, 1.0),
    )

    anchor_generator = class_config(get_default_anchor_generator)

    retina_loss = class_config(
        RetinaNetHeadLoss,
        box_encoder=box_encoder,
        anchor_generator=anchor_generator,
    )

    config.loss = class_config(
        LossModule,
        losses={
            "loss": retina_loss,
            "connector": class_config(
                LossConnector, key_mapping=CONN_BOX_LOSS_2D
            ),
        },
    )

    ######################################################
    ##                    OPTIMIZERS                    ##
    ######################################################
    config.optimizers = [
        get_optimizer_cfg(
            optimizer=class_config(
                SGD, lr=params.lr, momentum=0.9, weight_decay=0.0001
            ),
            lr_schedulers=[
                get_lr_scheduler_cfg(
                    class_config(
                        LinearLR, start_factor=0.001, total_iters=500
                    ),
                    end=500,
                    epoch_based=False,
                ),
                get_lr_scheduler_cfg(
                    class_config(MultiStepLR, milestones=[8, 11], gamma=0.1),
                ),
            ],
        )
    ]

    ######################################################
    ##                  DATA CONNECTOR                  ##
    ######################################################
    config.train_data_connector = class_config(
        DataConnector,
        key_mapping=CONN_IMAGES_TRAIN,
    )

    config.test_data_connector = class_config(
        DataConnector,
        key_mapping=CONN_IMAGES_TEST,
    )

    ######################################################
    ##                     CALLBACKS                    ##
    ######################################################
    # Logger
    callbacks = get_default_callbacks_cfg()

    # Visualizer
    callbacks.append(
        class_config(
            VisualizerCallback,
            visualizer=class_config(BoundingBoxVisualizer, vis_freq=100),
            output_dir=config.output_dir,
            test_connector=class_config(
                CallbackConnector,
                key_mapping=CONN_BBOX_2D_VIS,
            ),
        )
    )

    # Evaluator
    callbacks.append(
        class_config(
            EvaluatorCallback,
            evaluator=class_config(
                COCODetectEvaluator,
                data_root=data_root,
                split=test_split,
            ),
            metrics_to_eval=["Det"],
            test_connector=class_config(
                CallbackConnector,
                key_mapping=CONN_COCO_BBOX_EVAL,
            ),
        )
    )

    config.callbacks = callbacks

    ######################################################
    ##                     PL CLI                       ##
    ######################################################
    # PL Trainer args
    pl_trainer = get_default_pl_trainer_cfg(config)
    pl_trainer.max_epochs = params.num_epochs
    config.pl_trainer = pl_trainer

    return config.value_mode()