File size: 6,087 Bytes
9b33fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""ImageNet classification config."""

from __future__ import annotations

from collections.abc import Sequence

from ml_collections import ConfigDict

from vis4d.config import class_config
from vis4d.config.typing import DataConfig
from vis4d.data.const import CommonKeys as K
from vis4d.data.data_pipe import DataPipe
from vis4d.data.datasets.imagenet import ImageNet
from vis4d.data.transforms.autoaugment import RandAug
from vis4d.data.transforms.base import RandomApply, compose
from vis4d.data.transforms.crop import (
    CropImages,
    GenCentralCropParameters,
    GenRandomSizeCropParameters,
)
from vis4d.data.transforms.flip import FlipImages
from vis4d.data.transforms.mixup import (
    GenMixupParameters,
    MixupCategories,
    MixupImages,
)
from vis4d.data.transforms.normalize import NormalizeImages
from vis4d.data.transforms.random_erasing import RandomErasing
from vis4d.data.transforms.resize import GenResizeParameters, ResizeImages
from vis4d.data.transforms.to_tensor import ToTensor
from vis4d.engine.connectors import data_key, pred_key
from vis4d.zoo.base import (
    get_inference_dataloaders_cfg,
    get_train_dataloader_cfg,
)

CONN_IMAGENET_CLS_EVAL = {
    "prediction": pred_key("probs"),
    "groundtruth": data_key("categories"),
}


def get_train_dataloader(
    data_root: str,
    split: str,
    keys_to_load: Sequence[str],
    image_size: tuple[int, int],
    samples_per_gpu: int,
    workers_per_gpu: int,
) -> ConfigDict:
    """Get the default train dataloader for ImageNet 1K dataset."""
    # Train Dataset
    train_dataset_cfg = class_config(
        ImageNet,
        data_root=data_root,
        split=split,
        num_classes=1000,
        keys_to_load=keys_to_load,
    )

    flip_trans = class_config(
        RandomApply,
        transforms=[class_config(FlipImages)],
        probability=0.5,
    )
    random_resized_crop_trans = [
        class_config(GenRandomSizeCropParameters),
        class_config(CropImages),
        class_config(GenResizeParameters, shape=image_size, keep_ratio=False),
        class_config(ResizeImages),
    ]
    random_aug_trans = [
        class_config(RandAug, magnitude=10, use_increasing=True),
        class_config(RandomErasing),
    ]
    normalize_trans = class_config(NormalizeImages)
    train_preprocess_cfg = class_config(
        compose,
        transforms=[
            flip_trans,
            *random_resized_crop_trans,
            *random_aug_trans,
            normalize_trans,
        ],
    )

    mixup_trans = [
        class_config(GenMixupParameters, alpha=0.2, out_shape=image_size),
        class_config(MixupImages),
        class_config(MixupCategories, num_classes=1000, label_smoothing=0.1),
    ]
    train_batchprocess_cfg = class_config(
        compose,
        transforms=[
            *mixup_trans,
            class_config(ToTensor),
        ],
    )

    return get_train_dataloader_cfg(
        datasets_cfg=class_config(
            DataPipe,
            datasets=train_dataset_cfg,
            preprocess_fn=train_preprocess_cfg,
        ),
        batchprocess_cfg=train_batchprocess_cfg,
        samples_per_gpu=samples_per_gpu,
        workers_per_gpu=workers_per_gpu,
    )


def get_test_dataloader(
    data_root: str,
    split: str,
    keys_to_load: Sequence[str],
    image_size: tuple[int, int],
    samples_per_gpu: int,
    workers_per_gpu: int,
    crop_pct: float = 0.875,
) -> ConfigDict:
    """Get the default test dataloader for COCO detection."""
    # Test Dataset

    test_dataset_cfg = class_config(
        ImageNet,
        data_root=data_root,
        split=split,
        num_classes=1000,
        keys_to_load=keys_to_load,
    )

    crop_size = tuple(int(size / crop_pct) for size in image_size)
    resized_crop_trans = [
        class_config(
            GenResizeParameters,
            shape=crop_size,
            keep_ratio=True,
            allow_overflow=True,
        ),
        class_config(ResizeImages),
        class_config(
            GenCentralCropParameters, shape=image_size, keep_ratio=False
        ),
        class_config(CropImages),
    ]
    normalize_trans = class_config(NormalizeImages)
    test_preprocess_cfg = class_config(
        compose,
        transforms=[
            *resized_crop_trans,
            normalize_trans,
        ],
    )

    mixup_trans = [
        class_config(GenMixupParameters, alpha=0.2, out_shape=image_size),
        class_config(MixupImages),
        class_config(MixupCategories, num_classes=1000, label_smoothing=0.1),
    ]
    test_batchprocess_cfg = class_config(
        compose,
        transforms=[
            *mixup_trans,
            class_config(ToTensor),
        ],
    )

    return get_inference_dataloaders_cfg(
        datasets_cfg=class_config(
            DataPipe,
            datasets=test_dataset_cfg,
            preprocess_fn=test_preprocess_cfg,
        ),
        batchprocess_cfg=test_batchprocess_cfg,
        samples_per_gpu=samples_per_gpu,
        workers_per_gpu=workers_per_gpu,
    )


def get_imagenet_cls_cfg(
    data_root: str = "data/imagenet",
    train_split: str = "train",
    train_keys_to_load: Sequence[str] = (
        K.images,
        K.categories,
    ),
    test_split: str = "val",
    test_keys_to_load: Sequence[str] = (
        K.images,
        K.categories,
    ),
    image_size: tuple[int, int] = (224, 224),
    samples_per_gpu: int = 256,
    workers_per_gpu: int = 8,
) -> DataConfig:
    """Get the default config for COCO detection."""
    data = DataConfig()

    data.train_dataloader = get_train_dataloader(
        data_root=data_root,
        split=train_split,
        keys_to_load=train_keys_to_load,
        image_size=image_size,
        samples_per_gpu=samples_per_gpu,
        workers_per_gpu=workers_per_gpu,
    )

    data.test_dataloader = get_test_dataloader(
        data_root=data_root,
        split=test_split,
        keys_to_load=test_keys_to_load,
        image_size=image_size,
        samples_per_gpu=1,
        workers_per_gpu=workers_per_gpu,
    )

    return data