Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,942 Bytes
9b33fca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 |
"""CC-3DT model implementation.
This file composes the operations associated with CC-3DT
`https://arxiv.org/abs/2212.01247` into the full model implementation.
"""
from __future__ import annotations
from collections.abc import Sequence
from typing import NamedTuple
import torch
from torch import Tensor, nn
from vis4d.data.const import AxisMode
from vis4d.model.track.qdtrack import FasterRCNNQDTrackOut
from vis4d.op.base import BaseModel, ResNet
from vis4d.op.box.anchor import AnchorGenerator
from vis4d.op.box.box2d import bbox_area, bbox_clip
from vis4d.op.box.box3d import boxes3d_to_corners, transform_boxes3d
from vis4d.op.box.encoder import DeltaXYWHBBoxDecoder
from vis4d.op.detect3d.qd_3dt import QD3DTBBox3DHead, RoI2Det3D
from vis4d.op.detect3d.util import bev_3d_nms
from vis4d.op.detect.faster_rcnn import FasterRCNNHead
from vis4d.op.detect.rcnn import RCNNHead, RoI2Det
from vis4d.op.fpp import FPN
from vis4d.op.geometry.projection import project_points
from vis4d.op.geometry.rotation import (
quaternion_to_matrix,
rotation_matrix_yaw,
)
from vis4d.op.geometry.transform import inverse_rigid_transform
from vis4d.op.track3d.cc_3dt import (
CC3DTrackAssociation,
cam_to_global,
get_track_3d_out,
)
from vis4d.op.track3d.common import Track3DOut
from vis4d.op.track.qdtrack import QDTrackHead
from vis4d.state.track3d.cc_3dt import CC3DTrackGraph
from ..track.util import split_key_ref_indices
class FasterRCNNCC3DTOut(NamedTuple):
"""Output of CC-3DT model with Faster R-CNN detector."""
detector_3d_out: Tensor
detector_3d_target: Tensor
detector_3d_labels: Tensor
qdtrack_out: FasterRCNNQDTrackOut
class FasterRCNNCC3DT(nn.Module):
"""CC-3DT with Faster-RCNN detector."""
def __init__(
self,
num_classes: int,
basemodel: BaseModel | None = None,
faster_rcnn_head: FasterRCNNHead | None = None,
rcnn_box_decoder: DeltaXYWHBBoxDecoder | None = None,
qdtrack_head: QDTrackHead | None = None,
track_graph: CC3DTrackGraph | None = None,
pure_det: bool = False,
) -> None:
"""Creates an instance of the class.
Args:
num_classes (int): Number of object categories.
basemodel (BaseModel, optional): Base model network. Defaults to
None. If None, will use ResNet50.
faster_rcnn_head (FasterRCNNHead, optional): Faster RCNN head.
Defaults to None. if None, will use default FasterRCNNHead.
rcnn_box_decoder (DeltaXYWHBBoxDecoder, optional): Decoder for RCNN
bounding boxes. Defaults to None.
qdtrack_head (QDTrack, optional): QDTrack head. Defaults to None.
If None, will use default QDTrackHead.
track_graph (CC3DTrackGraph, optional): Track graph. Defaults to
None. If None, will use default CC3DTrackGraph.
pure_det (bool, optional): Whether to use pure detection. Defaults
to False.
"""
super().__init__()
self.basemodel = (
ResNet(resnet_name="resnet50", pretrained=True, trainable_layers=3)
if basemodel is None
else basemodel
)
self.fpn = FPN(self.basemodel.out_channels[2:], 256)
if faster_rcnn_head is None:
anchor_generator = AnchorGenerator(
scales=[4, 8],
ratios=[0.25, 0.5, 1.0, 2.0, 4.0],
strides=[4, 8, 16, 32, 64],
)
roi_head = RCNNHead(num_shared_convs=4, num_classes=num_classes)
self.faster_rcnn_head = FasterRCNNHead(
num_classes=num_classes,
anchor_generator=anchor_generator,
roi_head=roi_head,
)
else:
self.faster_rcnn_head = faster_rcnn_head
self.roi2det = RoI2Det(rcnn_box_decoder)
self.bbox_3d_head = QD3DTBBox3DHead(num_classes=num_classes)
self.roi2det_3d = RoI2Det3D()
self.qdtrack_head = (
QDTrackHead() if qdtrack_head is None else qdtrack_head
)
self.track_graph = (
CC3DTrackGraph() if track_graph is None else track_graph
)
self.pure_det = pure_det
def forward(
self,
images: list[Tensor],
images_hw: list[list[tuple[int, int]]],
intrinsics: list[Tensor],
extrinsics: list[Tensor] | None = None,
frame_ids: list[int] | None = None,
boxes2d: list[list[Tensor]] | None = None,
boxes3d: list[list[Tensor]] | None = None,
boxes3d_classes: list[list[Tensor]] | None = None,
boxes3d_track_ids: list[list[Tensor]] | None = None,
keyframes: None | list[list[bool]] | None = None,
) -> FasterRCNNCC3DTOut | Track3DOut:
"""Forward."""
if self.training:
assert (
boxes2d is not None
and boxes3d is not None
and boxes3d_classes is not None
and boxes3d_track_ids is not None
and keyframes is not None
)
return self._forward_train(
images,
images_hw,
intrinsics,
boxes2d,
boxes3d,
boxes3d_classes,
boxes3d_track_ids,
keyframes,
)
assert extrinsics is not None and frame_ids is not None
return self._forward_test(
images, images_hw, intrinsics, extrinsics, frame_ids
)
def _forward_train(
self,
images: list[Tensor],
images_hw: list[list[tuple[int, int]]],
intrinsics: list[Tensor],
target_boxes2d: list[list[Tensor]],
target_boxes3d: list[list[Tensor]],
target_classes: list[list[Tensor]],
target_track_ids: list[list[Tensor]],
keyframes: list[list[bool]],
) -> FasterRCNNCC3DTOut:
"""Foward training stage."""
key_index, ref_indices = split_key_ref_indices(keyframes)
# feature extraction
key_features = self.fpn(self.basemodel(images[key_index]))
ref_features = [
self.fpn(self.basemodel(images[ref_index]))
for ref_index in ref_indices
]
key_detector_out = self.faster_rcnn_head(
key_features,
images_hw[key_index],
target_boxes2d[key_index],
target_classes[key_index],
)
with torch.no_grad():
ref_detector_out = [
self.faster_rcnn_head(
ref_features[i],
images_hw[ref_index],
target_boxes2d[ref_index],
target_classes[ref_index],
)
for i, ref_index in enumerate(ref_indices)
]
key_proposals = key_detector_out.proposals.boxes
ref_proposals = [ref.proposals.boxes for ref in ref_detector_out]
key_target_boxes = target_boxes2d[key_index]
ref_target_boxes = [
target_boxes2d[ref_index] for ref_index in ref_indices
]
key_target_track_ids = target_track_ids[key_index]
ref_target_track_ids = [
target_track_ids[ref_index] for ref_index in ref_indices
]
(
key_embeddings,
ref_embeddings,
key_track_ids,
ref_track_ids,
) = self.qdtrack_head(
features=[key_features, *ref_features],
det_boxes=[key_proposals, *ref_proposals],
target_boxes=[key_target_boxes, *ref_target_boxes],
target_track_ids=[key_target_track_ids, *ref_target_track_ids],
)
assert (
ref_embeddings is not None
and key_track_ids is not None
and ref_track_ids is not None
)
predictions, targets, labels = self.bbox_3d_head(
features=key_features,
det_boxes=key_proposals,
intrinsics=intrinsics[key_index],
target_boxes=key_target_boxes,
target_boxes3d=target_boxes3d[key_index],
target_class_ids=target_classes[key_index],
)
detector_3d_out = torch.cat(predictions)
assert targets is not None and labels is not None
return FasterRCNNCC3DTOut(
detector_3d_out=detector_3d_out,
detector_3d_target=targets,
detector_3d_labels=labels,
qdtrack_out=FasterRCNNQDTrackOut(
detector_out=key_detector_out,
key_images_hw=images_hw[key_index],
key_target_boxes=key_target_boxes,
key_embeddings=key_embeddings,
ref_embeddings=ref_embeddings,
key_track_ids=key_track_ids,
ref_track_ids=ref_track_ids,
),
)
def _forward_test(
self,
images_list: list[Tensor],
images_hw: list[list[tuple[int, int]]],
intrinsics_list: list[Tensor],
extrinsics_list: list[Tensor],
frame_ids: list[int],
) -> Track3DOut:
"""Forward inference stage.
Curretnly only work with single batch per gpu.
"""
# (N, 1, 3, H, W) -> (N, 3, H, W)
images = torch.cat(images_list)
# (N, 1, 3, 3) -> (N, 3, 3)
intrinsics = torch.cat(intrinsics_list)
# (N, 1, 4, 4) -> (N, 4, 4)
extrinsics = torch.cat(extrinsics_list)
# (N, 1) -> (N,)
frame_id = frame_ids[0]
images_hw_list: list[tuple[int, int]] = sum(images_hw, [])
features = self.basemodel(images)
features = self.fpn(features)
_, roi, proposals, _, _, _ = self.faster_rcnn_head(
features, images_hw_list
)
boxes_2d_list, scores_2d_list, class_ids_list = self.roi2det(
*roi, proposals.boxes, images_hw_list
)
predictions, _, _ = self.bbox_3d_head(
features, det_boxes=boxes_2d_list
)
boxes_3d_list, scores_3d_list = self.roi2det_3d(
predictions, boxes_2d_list, class_ids_list, intrinsics
)
embeddings_list, _, _, _ = self.qdtrack_head(features, boxes_2d_list)
# Assign camera id
camera_ids_list = []
for i, boxes_2d in enumerate(boxes_2d_list):
camera_ids_list.append(
(torch.mul(torch.ones(len(boxes_2d)), i)).to(boxes_2d.device)
)
# Move 3D boxes to world coordinate
boxes_3d_list = cam_to_global(boxes_3d_list, extrinsics)
# Merge boxes from all cameras
boxes_2d = torch.cat(boxes_2d_list)
scores_2d = torch.cat(scores_2d_list)
camera_ids = torch.cat(camera_ids_list)
boxes_3d = torch.cat(boxes_3d_list)
scores_3d = torch.cat(scores_3d_list)
class_ids = torch.cat(class_ids_list)
embeddings = torch.cat(embeddings_list)
if self.pure_det:
return get_track_3d_out(
boxes_3d, class_ids, scores_3d, torch.zeros_like(class_ids)
)
# 3D NMS in world coordinate
keep_indices = bev_3d_nms(
center_x=boxes_3d[:, 0].unsqueeze(1),
center_y=boxes_3d[:, 1].unsqueeze(1),
width=boxes_3d[:, 4].unsqueeze(1),
length=boxes_3d[:, 5].unsqueeze(1),
angle=180.0 / torch.pi * boxes_3d[:, 8].unsqueeze(1),
scores=scores_2d * scores_3d,
)
boxes_2d = boxes_2d[keep_indices]
scores_2d = scores_2d[keep_indices]
camera_ids = camera_ids[keep_indices]
boxes_3d = boxes_3d[keep_indices]
scores_3d = scores_3d[keep_indices]
class_ids = class_ids[keep_indices]
embeddings = embeddings[keep_indices]
outs = self.track_graph(
boxes_2d,
scores_2d,
camera_ids,
boxes_3d,
scores_3d,
class_ids,
embeddings,
frame_id,
)
return outs
def __call__(
self,
images: list[Tensor] | Tensor,
images_hw: list[list[tuple[int, int]]],
intrinsics: list[Tensor] | Tensor,
extrinsics: Tensor | None = None,
frame_ids: list[list[int]] | None = None,
boxes2d: list[list[Tensor]] | None = None,
boxes3d: list[list[Tensor]] | None = None,
boxes3d_classes: list[list[Tensor]] | None = None,
boxes3d_track_ids: list[list[Tensor]] | None = None,
keyframes: None | list[list[bool]] | None = None,
) -> FasterRCNNCC3DTOut | Track3DOut:
"""Type definition for call implementation."""
return self._call_impl(
images,
images_hw,
intrinsics,
extrinsics,
frame_ids,
boxes2d,
boxes3d,
boxes3d_classes,
boxes3d_track_ids,
keyframes,
)
class CC3DT(nn.Module):
"""CC-3DT with custom detection results."""
def __init__(
self,
basemodel: BaseModel | None = None,
qdtrack_head: QDTrackHead | None = None,
track_graph: CC3DTrackGraph | None = None,
detection_range: Sequence[float] | None = None,
) -> None:
"""Creates an instance of the class.
Args:
basemodel (BaseModel, optional): Base model network. Defaults to
None. If None, will use ResNet50.
qdtrack_head (QDTrack, optional): QDTrack head. Defaults to None.
If None, will use default QDTrackHead.
track_graph (CC3DTrackGraph, optional): Track graph. Defaults to
None. If None, will use default CC3DTrackGraph.
detection_range (Sequence[float], optional): Detection range for
each class. Defaults to None.
"""
super().__init__()
self.basemodel = (
ResNet(resnet_name="resnet50", pretrained=True, trainable_layers=3)
if basemodel is None
else basemodel
)
self.fpn = FPN(self.basemodel.out_channels[2:], 256)
self.qdtrack_head = (
QDTrackHead() if qdtrack_head is None else qdtrack_head
)
self.track_graph = track_graph or CC3DTrackGraph(
track=CC3DTrackAssociation(init_score_thr=0.2, obj_score_thr=0.1),
update_3d_score=False,
add_backdrops=False,
)
self.detection_range = detection_range
def forward(
self,
images_list: list[Tensor],
images_hw: list[list[tuple[int, int]]],
intrinsics_list: list[Tensor],
extrinsics_list: list[Tensor],
frame_ids: list[int],
pred_boxes3d: list[list[Tensor]],
pred_boxes3d_classes: list[list[Tensor]],
pred_boxes3d_scores: list[list[Tensor]],
pred_boxes3d_velocities: list[list[Tensor]],
) -> Track3DOut:
"""Forward inference stage.
Curretnly only work with single batch per gpu.
"""
# (N, 1, 3, H, W) -> (N, 3, H, W)
images = torch.cat(images_list)
# (N, 1, 3, 3) -> (N, 3, 3)
intrinsics = torch.cat(intrinsics_list)
# (N, 1, 4, 4) -> (N, 4, 4)
extrinsics = torch.cat(extrinsics_list)
# (N, 1) -> (N,)
frame_id = frame_ids[0]
images_hw_list: list[tuple[int, int]] = sum(images_hw, [])
features = self.basemodel(images)
features = self.fpn(features)
# (1, 1, B,) -> (B,)
boxes_3d = pred_boxes3d[0][0]
class_ids = pred_boxes3d_classes[0][0]
scores_3d = pred_boxes3d_scores[0][0]
velocities = pred_boxes3d_velocities[0][0]
# Get 2D boxes and assign camera id
global_to_cams = inverse_rigid_transform(extrinsics)
boxes_3d_list = []
boxes_2d_list = []
class_ids_list = []
scores_list = []
camera_ids_list = []
for i, global_to_cam in enumerate(global_to_cams):
boxes3d_cam = transform_boxes3d(
boxes_3d,
global_to_cam,
source_axis_mode=AxisMode.ROS,
target_axis_mode=AxisMode.OPENCV,
)
corners = boxes3d_to_corners(
boxes3d_cam, axis_mode=AxisMode.OPENCV
)
corners_2d = project_points(corners, intrinsics[i])
boxes_2d = self._to_boxes2d(corners_2d)
boxes_2d = bbox_clip(boxes_2d, images_hw_list[i], 1)
mask = (
(boxes3d_cam[:, 2] > 0)
& (bbox_area(boxes_2d) > 0)
& (
bbox_area(boxes_2d)
< (images_hw_list[i][0] - 1) * (images_hw_list[i][1] - 1)
)
& self._filter_distance(class_ids, boxes3d_cam)
)
cc_3dt_boxes_3d = boxes_3d.new_zeros(len(boxes_2d[mask]), 12)
cc_3dt_boxes_3d[:, :3] = boxes_3d[mask][:, :3]
# WLH -> HWL
cc_3dt_boxes_3d[:, 3:6] = boxes_3d[mask][:, [5, 3, 4]]
cc_3dt_boxes_3d[:, 6:9] = rotation_matrix_yaw(
quaternion_to_matrix(boxes_3d[mask][:, 6:]), AxisMode.ROS
)
cc_3dt_boxes_3d[:, 9:] = velocities[mask]
boxes_3d_list.append(cc_3dt_boxes_3d)
boxes_2d_list.append(boxes_2d[mask])
class_ids_list.append(class_ids[mask])
scores_list.append(scores_3d[mask])
camera_ids_list.append(
(torch.mul(torch.ones(len(cc_3dt_boxes_3d)), i)).to(
boxes_2d.device
)
)
embeddings_list, _, _, _ = self.qdtrack_head(features, boxes_2d_list)
boxes_3d = torch.cat(boxes_3d_list)
boxes_2d = torch.cat(boxes_2d_list)
camera_ids = torch.cat(camera_ids_list)
scores = torch.cat(scores_list)
class_ids = torch.cat(class_ids_list)
embeddings = torch.cat(embeddings_list)
# Select project boxes2d according to bbox area
keep_indices = embeddings.new_ones(len(boxes_3d)).bool()
boxes_2d_area = bbox_area(boxes_2d)
for i, box3d in enumerate(boxes_3d):
for same_idx in (
(box3d[:3] == boxes_3d[:, :3]).all(dim=1).nonzero()
):
if (
same_idx != i
and boxes_2d_area[same_idx] > boxes_2d_area[i]
):
keep_indices[i] = False
break
boxes_3d = boxes_3d[keep_indices]
boxes_2d = boxes_2d[keep_indices]
camera_ids = camera_ids[keep_indices]
scores = scores[keep_indices]
class_ids = class_ids[keep_indices]
embeddings = embeddings[keep_indices]
outs = self.track_graph(
boxes_2d,
scores,
camera_ids,
boxes_3d,
scores,
class_ids,
embeddings,
frame_id,
)
return outs
def _to_boxes2d(self, corners_2d: Tensor) -> Tensor:
"""Project 3D boxes (Camera coordinates) to 2D boxes."""
min_x = torch.min(corners_2d[:, :, 0], 1).values.unsqueeze(-1)
min_y = torch.min(corners_2d[:, :, 1], 1).values.unsqueeze(-1)
max_x = torch.max(corners_2d[:, :, 0], 1).values.unsqueeze(-1)
max_y = torch.max(corners_2d[:, :, 1], 1).values.unsqueeze(-1)
return torch.cat([min_x, min_y, max_x, max_y], dim=1)
def _filter_distance(
self, class_ids: Tensor, boxes3d: Tensor, tolerance: float = 2.0
) -> Tensor:
"""Filter boxes3d on distance."""
if self.detection_range is None:
return torch.ones_like(class_ids, dtype=torch.bool)
return torch.linalg.norm( # pylint: disable=not-callable
boxes3d[:, [0, 2]], dim=1
) <= torch.tensor(
[
self.detection_range[class_id] + tolerance
for class_id in class_ids
]
).to(
class_ids.device
)
def __call__(
self,
images_list: list[Tensor],
images_hw: list[list[tuple[int, int]]],
intrinsics_list: list[Tensor],
extrinsics_list: list[Tensor],
frame_ids: list[int],
pred_boxes3d: list[list[Tensor]],
pred_boxes3d_classes: list[list[Tensor]],
pred_boxes3d_scores: list[list[Tensor]],
pred_boxes3d_velocities: list[list[Tensor]],
) -> Track3DOut:
"""Type definition for call implementation."""
return self._call_impl(
images_list,
images_hw,
intrinsics_list,
extrinsics_list,
frame_ids,
pred_boxes3d,
pred_boxes3d_classes,
pred_boxes3d_scores,
pred_boxes3d_velocities,
)
|