File size: 20,942 Bytes
9b33fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
"""CC-3DT model implementation.

This file composes the operations associated with CC-3DT
`https://arxiv.org/abs/2212.01247` into the full model implementation.
"""

from __future__ import annotations

from collections.abc import Sequence
from typing import NamedTuple

import torch
from torch import Tensor, nn

from vis4d.data.const import AxisMode
from vis4d.model.track.qdtrack import FasterRCNNQDTrackOut
from vis4d.op.base import BaseModel, ResNet
from vis4d.op.box.anchor import AnchorGenerator
from vis4d.op.box.box2d import bbox_area, bbox_clip
from vis4d.op.box.box3d import boxes3d_to_corners, transform_boxes3d
from vis4d.op.box.encoder import DeltaXYWHBBoxDecoder
from vis4d.op.detect3d.qd_3dt import QD3DTBBox3DHead, RoI2Det3D
from vis4d.op.detect3d.util import bev_3d_nms
from vis4d.op.detect.faster_rcnn import FasterRCNNHead
from vis4d.op.detect.rcnn import RCNNHead, RoI2Det
from vis4d.op.fpp import FPN
from vis4d.op.geometry.projection import project_points
from vis4d.op.geometry.rotation import (
    quaternion_to_matrix,
    rotation_matrix_yaw,
)
from vis4d.op.geometry.transform import inverse_rigid_transform
from vis4d.op.track3d.cc_3dt import (
    CC3DTrackAssociation,
    cam_to_global,
    get_track_3d_out,
)
from vis4d.op.track3d.common import Track3DOut
from vis4d.op.track.qdtrack import QDTrackHead
from vis4d.state.track3d.cc_3dt import CC3DTrackGraph

from ..track.util import split_key_ref_indices


class FasterRCNNCC3DTOut(NamedTuple):
    """Output of CC-3DT model with Faster R-CNN detector."""

    detector_3d_out: Tensor
    detector_3d_target: Tensor
    detector_3d_labels: Tensor
    qdtrack_out: FasterRCNNQDTrackOut


class FasterRCNNCC3DT(nn.Module):
    """CC-3DT with Faster-RCNN detector."""

    def __init__(
        self,
        num_classes: int,
        basemodel: BaseModel | None = None,
        faster_rcnn_head: FasterRCNNHead | None = None,
        rcnn_box_decoder: DeltaXYWHBBoxDecoder | None = None,
        qdtrack_head: QDTrackHead | None = None,
        track_graph: CC3DTrackGraph | None = None,
        pure_det: bool = False,
    ) -> None:
        """Creates an instance of the class.

        Args:
            num_classes (int): Number of object categories.
            basemodel (BaseModel, optional): Base model network. Defaults to
                None. If None, will use ResNet50.
            faster_rcnn_head (FasterRCNNHead, optional): Faster RCNN head.
                Defaults to None. if None, will use default FasterRCNNHead.
            rcnn_box_decoder (DeltaXYWHBBoxDecoder, optional): Decoder for RCNN
                bounding boxes. Defaults to None.
            qdtrack_head (QDTrack, optional): QDTrack head. Defaults to None.
                If None, will use default QDTrackHead.
            track_graph (CC3DTrackGraph, optional): Track graph. Defaults to
                None. If None, will use default CC3DTrackGraph.
            pure_det (bool, optional): Whether to use pure detection. Defaults
                to False.
        """
        super().__init__()
        self.basemodel = (
            ResNet(resnet_name="resnet50", pretrained=True, trainable_layers=3)
            if basemodel is None
            else basemodel
        )

        self.fpn = FPN(self.basemodel.out_channels[2:], 256)

        if faster_rcnn_head is None:
            anchor_generator = AnchorGenerator(
                scales=[4, 8],
                ratios=[0.25, 0.5, 1.0, 2.0, 4.0],
                strides=[4, 8, 16, 32, 64],
            )
            roi_head = RCNNHead(num_shared_convs=4, num_classes=num_classes)
            self.faster_rcnn_head = FasterRCNNHead(
                num_classes=num_classes,
                anchor_generator=anchor_generator,
                roi_head=roi_head,
            )
        else:
            self.faster_rcnn_head = faster_rcnn_head

        self.roi2det = RoI2Det(rcnn_box_decoder)

        self.bbox_3d_head = QD3DTBBox3DHead(num_classes=num_classes)

        self.roi2det_3d = RoI2Det3D()

        self.qdtrack_head = (
            QDTrackHead() if qdtrack_head is None else qdtrack_head
        )

        self.track_graph = (
            CC3DTrackGraph() if track_graph is None else track_graph
        )

        self.pure_det = pure_det

    def forward(
        self,
        images: list[Tensor],
        images_hw: list[list[tuple[int, int]]],
        intrinsics: list[Tensor],
        extrinsics: list[Tensor] | None = None,
        frame_ids: list[int] | None = None,
        boxes2d: list[list[Tensor]] | None = None,
        boxes3d: list[list[Tensor]] | None = None,
        boxes3d_classes: list[list[Tensor]] | None = None,
        boxes3d_track_ids: list[list[Tensor]] | None = None,
        keyframes: None | list[list[bool]] | None = None,
    ) -> FasterRCNNCC3DTOut | Track3DOut:
        """Forward."""
        if self.training:
            assert (
                boxes2d is not None
                and boxes3d is not None
                and boxes3d_classes is not None
                and boxes3d_track_ids is not None
                and keyframes is not None
            )
            return self._forward_train(
                images,
                images_hw,
                intrinsics,
                boxes2d,
                boxes3d,
                boxes3d_classes,
                boxes3d_track_ids,
                keyframes,
            )

        assert extrinsics is not None and frame_ids is not None
        return self._forward_test(
            images, images_hw, intrinsics, extrinsics, frame_ids
        )

    def _forward_train(
        self,
        images: list[Tensor],
        images_hw: list[list[tuple[int, int]]],
        intrinsics: list[Tensor],
        target_boxes2d: list[list[Tensor]],
        target_boxes3d: list[list[Tensor]],
        target_classes: list[list[Tensor]],
        target_track_ids: list[list[Tensor]],
        keyframes: list[list[bool]],
    ) -> FasterRCNNCC3DTOut:
        """Foward training stage."""
        key_index, ref_indices = split_key_ref_indices(keyframes)

        # feature extraction
        key_features = self.fpn(self.basemodel(images[key_index]))
        ref_features = [
            self.fpn(self.basemodel(images[ref_index]))
            for ref_index in ref_indices
        ]

        key_detector_out = self.faster_rcnn_head(
            key_features,
            images_hw[key_index],
            target_boxes2d[key_index],
            target_classes[key_index],
        )

        with torch.no_grad():
            ref_detector_out = [
                self.faster_rcnn_head(
                    ref_features[i],
                    images_hw[ref_index],
                    target_boxes2d[ref_index],
                    target_classes[ref_index],
                )
                for i, ref_index in enumerate(ref_indices)
            ]

        key_proposals = key_detector_out.proposals.boxes
        ref_proposals = [ref.proposals.boxes for ref in ref_detector_out]
        key_target_boxes = target_boxes2d[key_index]
        ref_target_boxes = [
            target_boxes2d[ref_index] for ref_index in ref_indices
        ]
        key_target_track_ids = target_track_ids[key_index]
        ref_target_track_ids = [
            target_track_ids[ref_index] for ref_index in ref_indices
        ]

        (
            key_embeddings,
            ref_embeddings,
            key_track_ids,
            ref_track_ids,
        ) = self.qdtrack_head(
            features=[key_features, *ref_features],
            det_boxes=[key_proposals, *ref_proposals],
            target_boxes=[key_target_boxes, *ref_target_boxes],
            target_track_ids=[key_target_track_ids, *ref_target_track_ids],
        )
        assert (
            ref_embeddings is not None
            and key_track_ids is not None
            and ref_track_ids is not None
        )

        predictions, targets, labels = self.bbox_3d_head(
            features=key_features,
            det_boxes=key_proposals,
            intrinsics=intrinsics[key_index],
            target_boxes=key_target_boxes,
            target_boxes3d=target_boxes3d[key_index],
            target_class_ids=target_classes[key_index],
        )
        detector_3d_out = torch.cat(predictions)
        assert targets is not None and labels is not None

        return FasterRCNNCC3DTOut(
            detector_3d_out=detector_3d_out,
            detector_3d_target=targets,
            detector_3d_labels=labels,
            qdtrack_out=FasterRCNNQDTrackOut(
                detector_out=key_detector_out,
                key_images_hw=images_hw[key_index],
                key_target_boxes=key_target_boxes,
                key_embeddings=key_embeddings,
                ref_embeddings=ref_embeddings,
                key_track_ids=key_track_ids,
                ref_track_ids=ref_track_ids,
            ),
        )

    def _forward_test(
        self,
        images_list: list[Tensor],
        images_hw: list[list[tuple[int, int]]],
        intrinsics_list: list[Tensor],
        extrinsics_list: list[Tensor],
        frame_ids: list[int],
    ) -> Track3DOut:
        """Forward inference stage.

        Curretnly only work with single batch per gpu.
        """
        # (N, 1, 3, H, W) -> (N, 3, H, W)
        images = torch.cat(images_list)
        # (N, 1, 3, 3) -> (N, 3, 3)
        intrinsics = torch.cat(intrinsics_list)
        # (N, 1, 4, 4) -> (N, 4, 4)
        extrinsics = torch.cat(extrinsics_list)
        # (N, 1) -> (N,)
        frame_id = frame_ids[0]
        images_hw_list: list[tuple[int, int]] = sum(images_hw, [])

        features = self.basemodel(images)
        features = self.fpn(features)
        _, roi, proposals, _, _, _ = self.faster_rcnn_head(
            features, images_hw_list
        )

        boxes_2d_list, scores_2d_list, class_ids_list = self.roi2det(
            *roi, proposals.boxes, images_hw_list
        )

        predictions, _, _ = self.bbox_3d_head(
            features, det_boxes=boxes_2d_list
        )

        boxes_3d_list, scores_3d_list = self.roi2det_3d(
            predictions, boxes_2d_list, class_ids_list, intrinsics
        )

        embeddings_list, _, _, _ = self.qdtrack_head(features, boxes_2d_list)

        # Assign camera id
        camera_ids_list = []
        for i, boxes_2d in enumerate(boxes_2d_list):
            camera_ids_list.append(
                (torch.mul(torch.ones(len(boxes_2d)), i)).to(boxes_2d.device)
            )

        # Move 3D boxes to world coordinate
        boxes_3d_list = cam_to_global(boxes_3d_list, extrinsics)

        # Merge boxes from all cameras
        boxes_2d = torch.cat(boxes_2d_list)
        scores_2d = torch.cat(scores_2d_list)
        camera_ids = torch.cat(camera_ids_list)
        boxes_3d = torch.cat(boxes_3d_list)
        scores_3d = torch.cat(scores_3d_list)
        class_ids = torch.cat(class_ids_list)
        embeddings = torch.cat(embeddings_list)

        if self.pure_det:
            return get_track_3d_out(
                boxes_3d, class_ids, scores_3d, torch.zeros_like(class_ids)
            )

        # 3D NMS in world coordinate
        keep_indices = bev_3d_nms(
            center_x=boxes_3d[:, 0].unsqueeze(1),
            center_y=boxes_3d[:, 1].unsqueeze(1),
            width=boxes_3d[:, 4].unsqueeze(1),
            length=boxes_3d[:, 5].unsqueeze(1),
            angle=180.0 / torch.pi * boxes_3d[:, 8].unsqueeze(1),
            scores=scores_2d * scores_3d,
        )

        boxes_2d = boxes_2d[keep_indices]
        scores_2d = scores_2d[keep_indices]
        camera_ids = camera_ids[keep_indices]
        boxes_3d = boxes_3d[keep_indices]
        scores_3d = scores_3d[keep_indices]
        class_ids = class_ids[keep_indices]
        embeddings = embeddings[keep_indices]

        outs = self.track_graph(
            boxes_2d,
            scores_2d,
            camera_ids,
            boxes_3d,
            scores_3d,
            class_ids,
            embeddings,
            frame_id,
        )

        return outs

    def __call__(
        self,
        images: list[Tensor] | Tensor,
        images_hw: list[list[tuple[int, int]]],
        intrinsics: list[Tensor] | Tensor,
        extrinsics: Tensor | None = None,
        frame_ids: list[list[int]] | None = None,
        boxes2d: list[list[Tensor]] | None = None,
        boxes3d: list[list[Tensor]] | None = None,
        boxes3d_classes: list[list[Tensor]] | None = None,
        boxes3d_track_ids: list[list[Tensor]] | None = None,
        keyframes: None | list[list[bool]] | None = None,
    ) -> FasterRCNNCC3DTOut | Track3DOut:
        """Type definition for call implementation."""
        return self._call_impl(
            images,
            images_hw,
            intrinsics,
            extrinsics,
            frame_ids,
            boxes2d,
            boxes3d,
            boxes3d_classes,
            boxes3d_track_ids,
            keyframes,
        )


class CC3DT(nn.Module):
    """CC-3DT with custom detection results."""

    def __init__(
        self,
        basemodel: BaseModel | None = None,
        qdtrack_head: QDTrackHead | None = None,
        track_graph: CC3DTrackGraph | None = None,
        detection_range: Sequence[float] | None = None,
    ) -> None:
        """Creates an instance of the class.

        Args:
            basemodel (BaseModel, optional): Base model network. Defaults to
                None. If None, will use ResNet50.
            qdtrack_head (QDTrack, optional): QDTrack head. Defaults to None.
                If None, will use default QDTrackHead.
            track_graph (CC3DTrackGraph, optional): Track graph. Defaults to
                None. If None, will use default CC3DTrackGraph.
            detection_range (Sequence[float], optional): Detection range for
                each class. Defaults to None.
        """
        super().__init__()
        self.basemodel = (
            ResNet(resnet_name="resnet50", pretrained=True, trainable_layers=3)
            if basemodel is None
            else basemodel
        )

        self.fpn = FPN(self.basemodel.out_channels[2:], 256)

        self.qdtrack_head = (
            QDTrackHead() if qdtrack_head is None else qdtrack_head
        )

        self.track_graph = track_graph or CC3DTrackGraph(
            track=CC3DTrackAssociation(init_score_thr=0.2, obj_score_thr=0.1),
            update_3d_score=False,
            add_backdrops=False,
        )

        self.detection_range = detection_range

    def forward(
        self,
        images_list: list[Tensor],
        images_hw: list[list[tuple[int, int]]],
        intrinsics_list: list[Tensor],
        extrinsics_list: list[Tensor],
        frame_ids: list[int],
        pred_boxes3d: list[list[Tensor]],
        pred_boxes3d_classes: list[list[Tensor]],
        pred_boxes3d_scores: list[list[Tensor]],
        pred_boxes3d_velocities: list[list[Tensor]],
    ) -> Track3DOut:
        """Forward inference stage.

        Curretnly only work with single batch per gpu.
        """
        # (N, 1, 3, H, W) -> (N, 3, H, W)
        images = torch.cat(images_list)
        # (N, 1, 3, 3) -> (N, 3, 3)
        intrinsics = torch.cat(intrinsics_list)
        # (N, 1, 4, 4) -> (N, 4, 4)
        extrinsics = torch.cat(extrinsics_list)
        # (N, 1) -> (N,)
        frame_id = frame_ids[0]
        images_hw_list: list[tuple[int, int]] = sum(images_hw, [])

        features = self.basemodel(images)
        features = self.fpn(features)

        # (1, 1, B,) -> (B,)
        boxes_3d = pred_boxes3d[0][0]
        class_ids = pred_boxes3d_classes[0][0]
        scores_3d = pred_boxes3d_scores[0][0]
        velocities = pred_boxes3d_velocities[0][0]

        # Get 2D boxes and assign camera id
        global_to_cams = inverse_rigid_transform(extrinsics)

        boxes_3d_list = []
        boxes_2d_list = []
        class_ids_list = []
        scores_list = []
        camera_ids_list = []
        for i, global_to_cam in enumerate(global_to_cams):
            boxes3d_cam = transform_boxes3d(
                boxes_3d,
                global_to_cam,
                source_axis_mode=AxisMode.ROS,
                target_axis_mode=AxisMode.OPENCV,
            )

            corners = boxes3d_to_corners(
                boxes3d_cam, axis_mode=AxisMode.OPENCV
            )

            corners_2d = project_points(corners, intrinsics[i])

            boxes_2d = self._to_boxes2d(corners_2d)
            boxes_2d = bbox_clip(boxes_2d, images_hw_list[i], 1)

            mask = (
                (boxes3d_cam[:, 2] > 0)
                & (bbox_area(boxes_2d) > 0)
                & (
                    bbox_area(boxes_2d)
                    < (images_hw_list[i][0] - 1) * (images_hw_list[i][1] - 1)
                )
                & self._filter_distance(class_ids, boxes3d_cam)
            )

            cc_3dt_boxes_3d = boxes_3d.new_zeros(len(boxes_2d[mask]), 12)
            cc_3dt_boxes_3d[:, :3] = boxes_3d[mask][:, :3]
            # WLH -> HWL
            cc_3dt_boxes_3d[:, 3:6] = boxes_3d[mask][:, [5, 3, 4]]
            cc_3dt_boxes_3d[:, 6:9] = rotation_matrix_yaw(
                quaternion_to_matrix(boxes_3d[mask][:, 6:]), AxisMode.ROS
            )
            cc_3dt_boxes_3d[:, 9:] = velocities[mask]

            boxes_3d_list.append(cc_3dt_boxes_3d)
            boxes_2d_list.append(boxes_2d[mask])
            class_ids_list.append(class_ids[mask])
            scores_list.append(scores_3d[mask])
            camera_ids_list.append(
                (torch.mul(torch.ones(len(cc_3dt_boxes_3d)), i)).to(
                    boxes_2d.device
                )
            )

        embeddings_list, _, _, _ = self.qdtrack_head(features, boxes_2d_list)

        boxes_3d = torch.cat(boxes_3d_list)
        boxes_2d = torch.cat(boxes_2d_list)
        camera_ids = torch.cat(camera_ids_list)
        scores = torch.cat(scores_list)
        class_ids = torch.cat(class_ids_list)
        embeddings = torch.cat(embeddings_list)

        # Select project boxes2d according to bbox area
        keep_indices = embeddings.new_ones(len(boxes_3d)).bool()
        boxes_2d_area = bbox_area(boxes_2d)
        for i, box3d in enumerate(boxes_3d):
            for same_idx in (
                (box3d[:3] == boxes_3d[:, :3]).all(dim=1).nonzero()
            ):
                if (
                    same_idx != i
                    and boxes_2d_area[same_idx] > boxes_2d_area[i]
                ):
                    keep_indices[i] = False
                    break

        boxes_3d = boxes_3d[keep_indices]
        boxes_2d = boxes_2d[keep_indices]
        camera_ids = camera_ids[keep_indices]
        scores = scores[keep_indices]
        class_ids = class_ids[keep_indices]
        embeddings = embeddings[keep_indices]

        outs = self.track_graph(
            boxes_2d,
            scores,
            camera_ids,
            boxes_3d,
            scores,
            class_ids,
            embeddings,
            frame_id,
        )

        return outs

    def _to_boxes2d(self, corners_2d: Tensor) -> Tensor:
        """Project 3D boxes (Camera coordinates) to 2D boxes."""
        min_x = torch.min(corners_2d[:, :, 0], 1).values.unsqueeze(-1)
        min_y = torch.min(corners_2d[:, :, 1], 1).values.unsqueeze(-1)
        max_x = torch.max(corners_2d[:, :, 0], 1).values.unsqueeze(-1)
        max_y = torch.max(corners_2d[:, :, 1], 1).values.unsqueeze(-1)

        return torch.cat([min_x, min_y, max_x, max_y], dim=1)

    def _filter_distance(
        self, class_ids: Tensor, boxes3d: Tensor, tolerance: float = 2.0
    ) -> Tensor:
        """Filter boxes3d on distance."""
        if self.detection_range is None:
            return torch.ones_like(class_ids, dtype=torch.bool)

        return torch.linalg.norm(  # pylint: disable=not-callable
            boxes3d[:, [0, 2]], dim=1
        ) <= torch.tensor(
            [
                self.detection_range[class_id] + tolerance
                for class_id in class_ids
            ]
        ).to(
            class_ids.device
        )

    def __call__(
        self,
        images_list: list[Tensor],
        images_hw: list[list[tuple[int, int]]],
        intrinsics_list: list[Tensor],
        extrinsics_list: list[Tensor],
        frame_ids: list[int],
        pred_boxes3d: list[list[Tensor]],
        pred_boxes3d_classes: list[list[Tensor]],
        pred_boxes3d_scores: list[list[Tensor]],
        pred_boxes3d_velocities: list[list[Tensor]],
    ) -> Track3DOut:
        """Type definition for call implementation."""
        return self._call_impl(
            images_list,
            images_hw,
            intrinsics_list,
            extrinsics_list,
            frame_ids,
            pred_boxes3d,
            pred_boxes3d_classes,
            pred_boxes3d_scores,
            pred_boxes3d_velocities,
        )