Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,090 Bytes
9b33fca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
"""Quasi-dense instance similarity learning model."""
from __future__ import annotations
from typing import NamedTuple
import torch
from torch import Tensor, nn
from vis4d.common.ckpt import load_model_checkpoint
from vis4d.model.detect.yolox import REV_KEYS as YOLOX_REV_KEYS
from vis4d.op.base import BaseModel, CSPDarknet, ResNet
from vis4d.op.box.box2d import scale_and_clip_boxes
from vis4d.op.box.encoder import DeltaXYWHBBoxDecoder
from vis4d.op.box.poolers import MultiScaleRoIAlign
from vis4d.op.detect.faster_rcnn import FasterRCNNHead, FRCNNOut
from vis4d.op.detect.rcnn import RoI2Det
from vis4d.op.detect.yolox import YOLOXHead, YOLOXOut, YOLOXPostprocess
from vis4d.op.fpp import FPN, YOLOXPAFPN, FeaturePyramidProcessing
from vis4d.op.track.common import TrackOut
from vis4d.op.track.qdtrack import (
QDSimilarityHead,
QDTrackAssociation,
QDTrackHead,
)
from vis4d.state.track.qdtrack import QDTrackGraph
from .util import split_key_ref_indices
REV_KEYS = [
(r"^faster_rcnn_heads\.", "faster_rcnn_head."),
(r"^backbone.body\.", "basemodel."),
(r"^qdtrack\.", "qdtrack_head."),
]
class FasterRCNNQDTrackOut(NamedTuple):
"""Output of QDtrack model."""
detector_out: FRCNNOut
key_images_hw: list[tuple[int, int]]
key_target_boxes: list[Tensor]
key_embeddings: list[Tensor]
ref_embeddings: list[list[Tensor]]
key_track_ids: list[Tensor]
ref_track_ids: list[list[Tensor]]
class FasterRCNNQDTrack(nn.Module):
"""Wrap QDTrack with Faster R-CNN detector."""
def __init__(
self,
num_classes: int,
basemodel: BaseModel | None = None,
faster_rcnn_head: FasterRCNNHead | None = None,
rcnn_box_decoder: DeltaXYWHBBoxDecoder | None = None,
qdtrack_head: QDTrackHead | None = None,
track_graph: QDTrackGraph | None = None,
weights: None | str = None,
) -> None:
"""Creates an instance of the class.
Args:
num_classes (int): Number of object categories.
basemodel (BaseModel, optional): Base model network. Defaults to
None. If None, will use ResNet50.
faster_rcnn_head (FasterRCNNHead, optional): Faster RCNN head.
Defaults to None. if None, will use default FasterRCNNHead.
rcnn_box_decoder (DeltaXYWHBBoxDecoder, optional): Decoder for RCNN
bounding boxes. Defaults to None.
qdtrack_head (QDTrack, optional): QDTrack head. Defaults to None.
If None, will use default QDTrackHead.
track_graph (QDTrackGraph, optional): Track graph. Defaults to
None. If None, will use default QDTrackGraph.
weights (str, optional): Weights to load for model.
"""
super().__init__()
self.basemodel = (
ResNet(resnet_name="resnet50", pretrained=True, trainable_layers=3)
if basemodel is None
else basemodel
)
self.fpn = FPN(self.basemodel.out_channels[2:], 256)
if faster_rcnn_head is None:
self.faster_rcnn_head = FasterRCNNHead(num_classes=num_classes)
else:
self.faster_rcnn_head = faster_rcnn_head
self.roi2det = RoI2Det(rcnn_box_decoder)
self.qdtrack_head = (
QDTrackHead() if qdtrack_head is None else qdtrack_head
)
self.track_graph = (
QDTrackGraph() if track_graph is None else track_graph
)
if weights is not None:
load_model_checkpoint(
self, weights, map_location="cpu", rev_keys=REV_KEYS
)
def forward(
self,
images: list[Tensor] | Tensor,
images_hw: list[list[tuple[int, int]]] | list[tuple[int, int]],
original_hw: list[list[tuple[int, int]]] | list[tuple[int, int]],
frame_ids: list[list[int]] | list[int],
boxes2d: None | list[list[Tensor]] = None,
boxes2d_classes: None | list[list[Tensor]] = None,
boxes2d_track_ids: None | list[list[Tensor]] = None,
keyframes: None | list[list[bool]] = None,
) -> TrackOut | FasterRCNNQDTrackOut:
"""Forward."""
if self.training:
assert (
isinstance(images, list)
and boxes2d is not None
and boxes2d_classes is not None
and boxes2d_track_ids is not None
and keyframes is not None
)
return self._forward_train(
images,
images_hw, # type: ignore
boxes2d,
boxes2d_classes,
boxes2d_track_ids,
keyframes,
)
return self._forward_test(images, images_hw, original_hw, frame_ids) # type: ignore # pylint: disable=line-too-long
def _forward_train(
self,
images: list[Tensor],
images_hw: list[list[tuple[int, int]]],
target_boxes: list[list[Tensor]],
target_classes: list[list[Tensor]],
target_track_ids: list[list[Tensor]],
keyframes: list[list[bool]],
) -> FasterRCNNQDTrackOut:
"""Forward training stage.
Args:
images (list[Tensor]): Input images.
images_hw (list[list[tuple[int, int]]]): Input image resolutions.
target_boxes (list[list[Tensor]]): Bounding box labels.
target_classes (list[list[Tensor]]): Class labels.
target_track_ids (list[list[Tensor]]): Track IDs.
keyframes (list[list[bool]]): Whether the frame is a keyframe.
Returns:
FasterRCNNQDTrackOut: Raw model outputs.
"""
key_index, ref_indices = split_key_ref_indices(keyframes)
# feature extraction
key_features = self.fpn(self.basemodel(images[key_index]))
ref_features = [
self.fpn(self.basemodel(images[ref_index]))
for ref_index in ref_indices
]
key_detector_out = self.faster_rcnn_head(
key_features,
images_hw[key_index],
target_boxes[key_index],
target_classes[key_index],
)
with torch.no_grad():
ref_detector_out = [
self.faster_rcnn_head(
ref_features[i],
images_hw[ref_index],
target_boxes[ref_index],
target_classes[ref_index],
)
for i, ref_index in enumerate(ref_indices)
]
key_proposals = key_detector_out.proposals.boxes
ref_proposals = [ref.proposals.boxes for ref in ref_detector_out]
key_target_boxes = target_boxes[key_index]
ref_target_boxes = [
target_boxes[ref_index] for ref_index in ref_indices
]
key_target_track_ids = target_track_ids[key_index]
ref_target_track_ids = [
target_track_ids[ref_index] for ref_index in ref_indices
]
(
key_embeddings,
ref_embeddings,
key_track_ids,
ref_track_ids,
) = self.qdtrack_head(
features=[key_features, *ref_features],
det_boxes=[key_proposals, *ref_proposals],
target_boxes=[key_target_boxes, *ref_target_boxes],
target_track_ids=[key_target_track_ids, *ref_target_track_ids],
)
assert (
ref_embeddings is not None
and key_track_ids is not None
and ref_track_ids is not None
)
return FasterRCNNQDTrackOut(
detector_out=key_detector_out,
key_images_hw=images_hw[key_index],
key_target_boxes=key_target_boxes,
key_embeddings=key_embeddings,
ref_embeddings=ref_embeddings,
key_track_ids=key_track_ids,
ref_track_ids=ref_track_ids,
)
def _forward_test(
self,
images: Tensor,
images_hw: list[tuple[int, int]],
original_hw: list[tuple[int, int]],
frame_ids: list[int],
) -> TrackOut:
"""Forward inference stage."""
features = self.basemodel(images)
features = self.fpn(features)
detector_out = self.faster_rcnn_head(features, images_hw)
boxes, scores, class_ids = self.roi2det(
*detector_out.roi, detector_out.proposals.boxes, images_hw
)
embeddings, _, _, _ = self.qdtrack_head(features, boxes)
tracks = self.track_graph(
embeddings, boxes, scores, class_ids, frame_ids
)
for i, boxs in enumerate(tracks.boxes):
tracks.boxes[i] = scale_and_clip_boxes(
boxs, original_hw[i], images_hw[i]
)
return tracks
def __call__(
self,
images: list[Tensor] | Tensor,
images_hw: list[list[tuple[int, int]]] | list[tuple[int, int]],
original_hw: list[tuple[int, int]],
frame_ids: list[list[int]] | list[int],
boxes2d: None | list[list[Tensor]] = None,
boxes2d_classes: None | list[list[Tensor]] = None,
boxes2d_track_ids: None | list[list[Tensor]] = None,
keyframes: None | list[list[bool]] = None,
) -> TrackOut | FasterRCNNQDTrackOut:
"""Type definition for call implementation."""
return self._call_impl(
images,
images_hw,
original_hw,
frame_ids,
boxes2d,
boxes2d_classes,
boxes2d_track_ids,
keyframes,
)
class YOLOXQDTrackOut(NamedTuple):
"""Output of QDtrack YOLOX model."""
detector_out: YOLOXOut
key_images_hw: list[tuple[int, int]]
key_target_boxes: list[Tensor]
key_target_classes: list[Tensor]
key_embeddings: list[Tensor]
ref_embeddings: list[list[Tensor]]
key_track_ids: list[Tensor]
ref_track_ids: list[list[Tensor]]
class YOLOXQDTrack(nn.Module):
"""Wrap QDTrack with YOLOX detector."""
def __init__(
self,
num_classes: int,
basemodel: BaseModel | None = None,
fpn: FeaturePyramidProcessing | None = None,
yolox_head: YOLOXHead | None = None,
train_postprocessor: YOLOXPostprocess | None = None,
test_postprocessor: YOLOXPostprocess | None = None,
qdtrack_head: QDTrackHead | None = None,
track_graph: QDTrackGraph | None = None,
weights: None | str = None,
) -> None:
"""Creates an instance of the class.
Args:
num_classes (int): Number of object categories.
basemodel (BaseModel, optional): Base model. Defaults to None. If
None, will use CSPDarknet.
fpn (FeaturePyramidProcessing, optional): Feature Pyramid
Processing. Defaults to None. If None, will use YOLOXPAFPN.
yolox_head (YOLOXHead, optional): YOLOX head. Defaults to None. If
None, will use YOLOXHead.
train_postprocessor (YOLOXPostprocess, optional): Post processor
for training. Defaults to None. If None, will use
YOLOXPostprocess.
test_postprocessor (YOLOXPostprocess, optional): Post processor
for testing. Defaults to None. If None, will use
YOLOXPostprocess.
qdtrack_head (QDTrack, optional): QDTrack head. Defaults to None.
If None, will use default QDTrackHead.
track_graph (QDTrackGraph, optional): Track graph. Defaults to
None. If None, will use default QDTrackGraph.
weights (str, optional): Weights to load for model.
"""
super().__init__()
self.basemodel = (
CSPDarknet(deepen_factor=1.33, widen_factor=1.25)
if basemodel is None
else basemodel
)
self.fpn = (
YOLOXPAFPN([320, 640, 1280], 320, num_csp_blocks=4)
if fpn is None
else fpn
)
self.yolox_head = (
YOLOXHead(
num_classes=num_classes, in_channels=320, feat_channels=320
)
if yolox_head is None
else yolox_head
)
self.train_postprocessor = (
YOLOXPostprocess(
self.yolox_head.point_generator,
self.yolox_head.box_decoder,
nms_threshold=0.7,
score_thr=0.0,
nms_pre=2000,
max_per_img=1000,
)
if train_postprocessor is None
else train_postprocessor
)
self.test_postprocessor = (
YOLOXPostprocess(
self.yolox_head.point_generator,
self.yolox_head.box_decoder,
nms_threshold=0.65,
score_thr=0.1,
)
if test_postprocessor is None
else test_postprocessor
)
self.qdtrack_head = (
QDTrackHead(
QDSimilarityHead(
MultiScaleRoIAlign(
resolution=[7, 7],
strides=[8, 16, 32],
sampling_ratio=0,
),
in_dim=320,
)
)
if qdtrack_head is None
else qdtrack_head
)
self.track_graph = (
QDTrackGraph(
track=QDTrackAssociation(
init_score_thr=0.5, obj_score_thr=0.35
)
)
if track_graph is None
else track_graph
)
if weights is not None:
load_model_checkpoint(
self, weights, map_location="cpu", rev_keys=YOLOX_REV_KEYS
)
def forward(
self,
images: list[Tensor] | Tensor,
images_hw: list[list[tuple[int, int]]] | list[tuple[int, int]],
original_hw: list[list[tuple[int, int]]] | list[tuple[int, int]],
frame_ids: list[list[int]] | list[int],
boxes2d: None | list[list[Tensor]] = None,
boxes2d_classes: None | list[list[Tensor]] = None,
boxes2d_track_ids: None | list[list[Tensor]] = None,
keyframes: None | list[list[bool]] = None,
) -> TrackOut | YOLOXQDTrackOut:
"""Forward."""
if self.training:
assert (
isinstance(images, list)
and boxes2d is not None
and boxes2d_classes is not None
and boxes2d_track_ids is not None
and keyframes is not None
)
return self._forward_train(
images,
images_hw, # type: ignore
boxes2d,
boxes2d_classes,
boxes2d_track_ids,
keyframes,
)
return self._forward_test(images, images_hw, original_hw, frame_ids) # type: ignore # pylint: disable=line-too-long
def _forward_train(
self,
images: list[Tensor],
images_hw: list[list[tuple[int, int]]],
target_boxes: list[list[Tensor]],
target_classes: list[list[Tensor]],
target_track_ids: list[list[Tensor]],
keyframes: list[list[bool]],
) -> YOLOXQDTrackOut:
"""Forward training stage.
Args:
images (list[Tensor]): Input images.
images_hw (list[list[tuple[int, int]]]): Input image resolutions.
target_boxes (list[list[Tensor]]): Bounding box labels.
target_classes (list[list[Tensor]]): Class labels.
target_track_ids (list[list[Tensor]]): Track IDs.
keyframes (list[list[bool]]): Whether the frame is a keyframe.
Returns:
YOLOXQDTrackOut: Raw model outputs.
"""
key_index, ref_indices = split_key_ref_indices(keyframes)
# feature extraction
key_features = self.fpn(self.basemodel(images[key_index].contiguous()))
ref_features = [
self.fpn(self.basemodel(images[ref_index].contiguous()))
for ref_index in ref_indices
]
key_detector_out = self.yolox_head(key_features[-3:])
key_proposals, _, _ = self.train_postprocessor(
cls_outs=key_detector_out.cls_score,
reg_outs=key_detector_out.bbox_pred,
obj_outs=key_detector_out.objectness,
images_hw=images_hw[key_index],
)
with torch.no_grad():
ref_detector_out = [
self.yolox_head(ref_feat[-3:]) for ref_feat in ref_features
]
ref_proposals = [
self.train_postprocessor(
cls_outs=ref_out.cls_score,
reg_outs=ref_out.bbox_pred,
obj_outs=ref_out.objectness,
images_hw=images_hw[ref_index],
)[0]
for ref_index, ref_out in zip(ref_indices, ref_detector_out)
]
key_target_boxes = target_boxes[key_index]
ref_target_boxes = [
target_boxes[ref_index] for ref_index in ref_indices
]
key_target_classes = target_classes[key_index]
key_target_track_ids = target_track_ids[key_index]
ref_target_track_ids = [
target_track_ids[ref_index] for ref_index in ref_indices
]
(
key_embeddings,
ref_embeddings,
key_track_ids,
ref_track_ids,
) = self.qdtrack_head(
features=[key_features, *ref_features],
det_boxes=[key_proposals, *ref_proposals],
target_boxes=[key_target_boxes, *ref_target_boxes],
target_track_ids=[key_target_track_ids, *ref_target_track_ids],
)
assert (
ref_embeddings is not None
and key_track_ids is not None
and ref_track_ids is not None
)
return YOLOXQDTrackOut(
detector_out=key_detector_out,
key_images_hw=images_hw[key_index],
key_target_boxes=key_target_boxes,
key_target_classes=key_target_classes,
key_embeddings=key_embeddings,
ref_embeddings=ref_embeddings,
key_track_ids=key_track_ids,
ref_track_ids=ref_track_ids,
)
def _forward_test(
self,
images: torch.Tensor,
images_hw: list[tuple[int, int]],
original_hw: list[tuple[int, int]],
frame_ids: list[int],
) -> TrackOut:
"""Forward inference stage."""
features = self.fpn(self.basemodel(images))
outs = self.yolox_head(features[-3:])
boxes, scores, class_ids = self.test_postprocessor(
cls_outs=outs.cls_score,
reg_outs=outs.bbox_pred,
obj_outs=outs.objectness,
images_hw=images_hw,
)
embeddings, _, _, _ = self.qdtrack_head(features, boxes)
tracks = self.track_graph(
embeddings, boxes, scores, class_ids, frame_ids
)
for i, boxs in enumerate(tracks.boxes):
tracks.boxes[i] = scale_and_clip_boxes(
boxs, original_hw[i], images_hw[i]
)
return tracks
def __call__(
self,
images: list[Tensor] | Tensor,
images_hw: list[list[tuple[int, int]]] | list[tuple[int, int]],
original_hw: list[list[tuple[int, int]]] | list[tuple[int, int]],
frame_ids: list[list[int]] | list[int],
boxes2d: None | list[list[Tensor]] = None,
boxes2d_classes: None | list[list[Tensor]] = None,
boxes2d_track_ids: None | list[list[Tensor]] = None,
keyframes: None | list[list[bool]] = None,
) -> TrackOut | FasterRCNNQDTrackOut:
"""Type definition for call implementation."""
return self._call_impl(
images,
images_hw,
original_hw,
frame_ids,
boxes2d,
boxes2d_classes,
boxes2d_track_ids,
keyframes,
)
|