Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,736 Bytes
9b33fca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
"""VeloLSTM 3D motion model."""
from __future__ import annotations
from typing import NamedTuple
import torch
from torch import Tensor, nn
from vis4d.common.ckpt import load_model_checkpoint
from vis4d.op.geometry.rotation import acute_angle, normalize_angle
from vis4d.op.layer.weight_init import xavier_init
class VeloLSTMOut(NamedTuple):
"""VeloLSTM output."""
loc_preds: Tensor
loc_refines: Tensor
class VeloLSTM(nn.Module):
"""Estimating object location in world coordinates.
Prediction LSTM:
Input: 5 frames velocity
Output: Next frame location
Updating LSTM:
Input: predicted location and observed location
Output: Refined location
"""
def __init__(
self,
num_frames: int = 5,
feature_dim: int = 64,
hidden_size: int = 128,
num_layers: int = 2,
loc_dim: int = 7,
dropout: float = 0.1,
weights: str | None = None,
) -> None:
"""Init."""
super().__init__()
self.num_frames = num_frames
self.feature_dim = feature_dim
self.hidden_size = hidden_size
self.num_layers = num_layers
self.loc_dim = loc_dim
self.vel2feat = nn.Linear(
loc_dim,
feature_dim,
)
self.pred_lstm = nn.LSTM(
input_size=feature_dim,
hidden_size=hidden_size,
dropout=dropout,
num_layers=num_layers,
)
self.pred2atten = nn.Linear(
hidden_size,
loc_dim,
bias=False,
)
self.conf2feat = nn.Linear(
1,
feature_dim,
bias=False,
)
self.refine_lstm = nn.LSTM(
input_size=3 * feature_dim,
hidden_size=hidden_size,
dropout=dropout,
num_layers=num_layers,
)
self.conf2atten = nn.Linear(
hidden_size,
loc_dim,
bias=False,
)
self._init_weights()
if weights is not None:
load_model_checkpoint(
self,
weights,
map_location="cpu",
rev_keys=[(r"^model\.", ""), (r"^module\.", "")],
)
def _init_weights(self) -> None:
"""Initialize model weights."""
xavier_init(self.vel2feat)
xavier_init(self.pred2atten)
xavier_init(self.conf2feat)
xavier_init(self.conf2atten)
init_lstm_module(self.pred_lstm)
init_lstm_module(self.refine_lstm)
def init_hidden(
self, device: torch.device, batch_size: int = 1
) -> tuple[Tensor, Tensor]:
"""Initializae hidden state.
The axes semantics are (num_layers, minibatch_size, hidden_dim)
"""
return (
torch.zeros(self.num_layers, batch_size, self.hidden_size).to(
device
),
torch.zeros(self.num_layers, batch_size, self.hidden_size).to(
device
),
)
def refine(
self,
location: Tensor,
observation: Tensor,
prev_location: Tensor,
confidence: Tensor,
hc_0: tuple[Tensor, Tensor],
) -> tuple[Tensor, tuple[Tensor, Tensor]]:
"""Refine predicted location using single frame estimation at t+1.
Input:
location: (num_batch x loc_dim), location from prediction
observation: (num_batch x loc_dim), location from single frame
estimation
prev_location: (num_batch x loc_dim), refined location
confidence: (num_batch X 1), depth estimation confidence
hc_0: (num_layers, num_batch, hidden_size), tuple of hidden and
cell
Middle:
loc_embed: (1, num_batch x feature_dim), predicted location feature
obs_embed: (1, num_batch x feature_dim), single frame location
feature
conf_embed: (1, num_batch x feature_dim), depth estimation
confidence feature
embed: (1, num_batch x 2*feature_dim), location feature
out: (1 x num_batch x hidden_size), lstm output
Output:
hc_n: (num_layers, num_batch, hidden_size), tuple of updated
hidden, cell
output_pred: (num_batch x loc_dim), predicted location
"""
num_batch = location.shape[0]
pred_vel = location - prev_location
obsv_vel = observation - prev_location
# Embed feature to hidden_size
loc_embed = self.vel2feat(pred_vel).view(num_batch, self.feature_dim)
obs_embed = self.vel2feat(obsv_vel).view(num_batch, self.feature_dim)
conf_embed = self.conf2feat(confidence).view(
num_batch, self.feature_dim
)
embed = torch.cat(
[
loc_embed,
obs_embed,
conf_embed,
],
dim=1,
).view(1, num_batch, 3 * self.feature_dim)
out, (h_n, c_n) = self.refine_lstm(embed, hc_0)
delta_vel_atten = torch.sigmoid(self.conf2atten(out)).view(
num_batch, self.loc_dim
)
output_pred = (
delta_vel_atten * obsv_vel
+ (1.0 - delta_vel_atten) * pred_vel
+ prev_location
)
return output_pred, (h_n, c_n)
def predict(
self,
vel_history: Tensor,
location: Tensor,
hc_0: tuple[Tensor, Tensor],
) -> tuple[Tensor, tuple[Tensor, Tensor]]:
"""Predict location at t+1 using updated location at t.
Input:
vel_history: (num_seq, num_batch, loc_dim), velocity from previous
num_seq updates
location: (num_batch, loc_dim), location from previous update
hc_0: (num_layers, num_batch, hidden_size), tuple of hidden and
cell
Middle:
embed: (num_seq, num_batch x feature_dim), location feature
out: (num_seq x num_batch x hidden_size), lstm output
attention_logit: (num_seq x num_batch x loc_dim), the predicted
residual
Output:
hc_n: (num_layers, num_batch, hidden_size), tuple of updated
hidden, cell
output_pred: (num_batch x loc_dim), predicted location
"""
num_seq, num_batch, _ = vel_history.shape
# Embed feature to hidden_size
embed = self.vel2feat(vel_history).view(
num_seq, num_batch, self.feature_dim
)
out, (h_n, c_n) = self.pred_lstm(embed, hc_0)
attention_logit = self.pred2atten(out).view(
num_seq, num_batch, self.loc_dim
)
attention = torch.softmax(attention_logit, dim=0)
output_pred = torch.sum(attention * vel_history, dim=0) + location
return output_pred, (h_n, c_n)
def forward(self, pred_traj: Tensor) -> VeloLSTMOut:
"""Forward of QD3DTrackGraph in training stage."""
loc_preds_list = []
loc_refines_list = []
hidden_predict = self.init_hidden(
pred_traj.device, batch_size=pred_traj.shape[0]
)
hidden_refine = self.init_hidden(
pred_traj.device, batch_size=pred_traj.shape[0]
)
vel_history = pred_traj.new_zeros(
self.num_frames, pred_traj.shape[0], self.loc_dim
)
# Starting condition
pred_traj[:, :, 6] = normalize_angle(pred_traj[:, :, 6])
prev_refine = pred_traj[:, 0, : self.loc_dim]
loc_pred = pred_traj[:, 1, : self.loc_dim]
# LSTM
for i in range(1, pred_traj.shape[1]):
# Update
loc_pred[:, 6] = normalize_angle(loc_pred[:, 6])
for batch_id in range(pred_traj.shape[0]):
# acute angle
loc_pred[batch_id, 6] = acute_angle(
loc_pred[batch_id, 6], pred_traj[batch_id, i, 6]
)
loc_refine, hidden_refine = self.refine(
loc_pred.detach().clone(),
pred_traj[:, i, : self.loc_dim],
prev_refine.detach().clone(),
pred_traj[:, i, -1].unsqueeze(-1),
hidden_refine,
)
loc_refine[:, 6] = normalize_angle(loc_refine[:, 6])
if i == 1:
vel_history = torch.cat(
[(loc_refine - prev_refine).unsqueeze(0)] * self.num_frames
)
else:
vel_history = torch.cat(
[vel_history[1:], (loc_refine - prev_refine).unsqueeze(0)],
dim=0,
)
prev_refine = loc_refine
# Predict
loc_pred, hidden_predict = self.predict(
vel_history, loc_refine.detach().clone(), hidden_predict
)
loc_pred[:, 6] = normalize_angle(loc_pred[:, 6])
loc_refines_list.append(loc_refine)
loc_preds_list.append(loc_pred)
loc_refines = torch.cat(loc_refines_list, dim=1).view(
pred_traj.shape[0], -1, self.loc_dim
)
loc_preds = torch.cat(loc_preds_list, dim=1).view(
pred_traj.shape[0], -1, self.loc_dim
)
return VeloLSTMOut(loc_preds=loc_preds, loc_refines=loc_refines)
def init_lstm_module(layer: nn.Module) -> None:
"""Initialize LSTM weights and biases."""
for name, param in layer.named_parameters():
if "weight_ih" in name:
torch.nn.init.xavier_uniform_(param.data)
elif "weight_hh" in name:
torch.nn.init.orthogonal_(param.data)
elif "bias" in name:
param.data.fill_(0)
|