File size: 10,530 Bytes
9b33fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
"""SHIFT result writer."""

from __future__ import annotations

import io
import itertools
import json
import os
from collections import defaultdict

import numpy as np
from PIL import Image

from vis4d.common.array import array_to_numpy
from vis4d.common.imports import SCALABEL_AVAILABLE
from vis4d.common.typing import (
    ArrayLike,
    GenericFunc,
    MetricLogs,
    NDArrayNumber,
)
from vis4d.data.datasets.shift import shift_det_map
from vis4d.data.io import DataBackend, ZipBackend
from vis4d.eval.base import Evaluator

if SCALABEL_AVAILABLE:
    from scalabel.label.transforms import mask_to_rle, xyxy_to_box2d
    from scalabel.label.typing import Dataset, Frame, Label
else:
    raise ImportError("scalabel is not installed.")


class SHIFTMultitaskWriter(Evaluator):
    """SHIFT result writer for online evaluation."""

    inverse_cat_map = {v: k for k, v in shift_det_map.items()}

    def __init__(
        self,
        output_dir: str,
        submission_file: str = "submission.zip",
    ) -> None:
        """Creates a new writer.

        Args:
            output_dir (str): Output directory.
            submission_file (str): Submission file name. Defaults to
                "submission.zip".
        """
        super().__init__()
        assert submission_file.endswith(
            ".zip"
        ), "Submission file must be a zip file."
        self.backend: DataBackend = ZipBackend()
        self.output_path = os.path.join(output_dir, submission_file)
        self.frames_det_2d: list[Frame] = []
        self.frames_det_3d: list[Frame] = []
        self.sample_counts: defaultdict[str, int] = defaultdict(int)

    def _write_sem_mask(
        self, sem_mask: NDArrayNumber, sample_name: str, video_name: str
    ) -> None:
        """Write semantic mask.

        Args:
            sem_mask (NDArrayNumber): Predicted semantic mask, shape (H, W).
            sample_name (str): Sample name.
            video_name (str): Video name.
        """
        image = Image.fromarray(sem_mask.astype("uint8"), mode="L")
        image_bytes = io.BytesIO()
        image.save(image_bytes, format="PNG")
        self.backend.set(
            f"{self.output_path}/semseg/{video_name}/{sample_name}",
            image_bytes.getvalue(),
            mode="w",
        )

    def _write_depth(
        self, depth_map: NDArrayNumber, sample_name: str, video_name: str
    ) -> None:
        """Write depth map.

        Args:
            depth_map (NDArrayNumber): Predicted depth map, shape (H, W).
            sample_name (str): Sample name.
            video_name (str): Video name.
        """
        depth_map = np.clip(depth_map / 80.0 * 255.0, 0, 255)
        image = Image.fromarray(depth_map.astype("uint8"), mode="L")
        image_bytes = io.BytesIO()
        image.save(image_bytes, format="PNG")
        self.backend.set(
            f"{self.output_path}/depth/{video_name}/{sample_name}",
            image_bytes.getvalue(),
            mode="w",
        )

    def _write_flow(
        self, flow: NDArrayNumber, sample_name: str, video_name: str
    ) -> None:
        """Write semantic mask.

        Args:
            flow (NDArrayNumber): Predicted optical flow, shape (H, W, 2).
            sample_name (str): Sample name.
            video_name (str): Video name.
        """
        raise NotImplementedError

    def process_batch(
        self,
        frame_ids: list[int],
        sample_names: list[str],
        sequence_names: list[str],
        pred_sem_mask: list[ArrayLike] | None = None,
        pred_depth: list[ArrayLike] | None = None,
        pred_flow: list[ArrayLike] | None = None,
        pred_boxes2d: list[ArrayLike] | None = None,
        pred_boxes2d_classes: list[ArrayLike] | None = None,
        pred_boxes2d_scores: list[ArrayLike] | None = None,
        pred_boxes2d_track_ids: list[ArrayLike] | None = None,
        pred_instance_masks: list[ArrayLike] | None = None,
    ) -> None:
        """Process SHIFT results.

        You can omit some of the predictions if they are not used.

        Args:
            frame_ids (list[int]): Frame IDs.
            sample_names (list[str]): Sample names.
            sequence_names (list[str]): Sequence names.
            pred_sem_mask (list[ArrayLike], optional): Predicted semantic
                masks, each in shape (C, H, W) or (H, W). Defaults to None.
            pred_depth (list[ArrayLike], optional): Predicted depth maps,
                each in shape (H, W), with meter unit. Defaults to None.
            pred_flow (list[ArrayLike], optional): Predicted optical flows,
                each in shape (H, W, 2). Defaults to None.
            pred_boxes2d (list[ArrayLike], optional): Predicted 2D boxes,
                each in shape (N, 4). Defaults to None.
            pred_boxes2d_classes (list[ArrayLike], optional): Predicted
                2D box classes, each in shape (N,). Defaults to None.
            pred_boxes2d_scores (list[ArrayLike], optional): Predicted
                2D box scores, each in shape (N,). Defaults to None.
            pred_boxes2d_track_ids (list[ArrayLike], optional): Predicted
                2D box track IDs, each in shape (N,). Defaults to None.
            pred_instance_masks (list[ArrayLike], optional): Predicted
                instance masks, each in shape (N, H, W). Defaults to None.
        """
        for i, (frame_id, sample_name, sequence_name) in enumerate(
            zip(frame_ids, sample_names, sequence_names)
        ):
            if pred_sem_mask is not None:
                sem_mask_ = array_to_numpy(
                    pred_sem_mask[i],
                    n_dims=None,
                    dtype=np.float32,
                )
                if len(sem_mask_.shape) == 3:
                    sem_mask = sem_mask_.argmax(axis=0)
                else:
                    sem_mask = sem_mask_.astype(np.uint8)
                semseg_filename = sample_name.replace(".jpg", ".png").replace(
                    "img", "semseg"
                )
                self._write_sem_mask(sem_mask, semseg_filename, sequence_name)
                self.sample_counts["semseg"] += 1
            if pred_depth is not None:
                depth = array_to_numpy(
                    pred_depth[i], n_dims=None, dtype=np.float32
                )
                depth_filename = sample_name.replace(".jpg", ".png").replace(
                    "img", "depth"
                )
                self._write_depth(depth, depth_filename, sequence_name)
                self.sample_counts["depth"] += 1
            if pred_flow is not None:
                flow = array_to_numpy(
                    pred_flow[i], n_dims=None, dtype=np.float32
                )
                self._write_flow(flow, sample_name, sequence_name)
                self.sample_counts["flow"] += 1
            if (
                pred_boxes2d is not None
                and pred_boxes2d_classes is not None
                and pred_boxes2d_scores is not None
            ):
                labels = []
                if pred_instance_masks:
                    masks = array_to_numpy(
                        pred_instance_masks[i], n_dims=None, dtype=np.float32
                    )
                if pred_boxes2d_track_ids:
                    track_ids = array_to_numpy(
                        pred_boxes2d_track_ids[i],
                        n_dims=None,
                        dtype=np.int64,
                    )
                for box, score, class_id in zip(
                    pred_boxes2d[i],
                    pred_boxes2d_scores[i],
                    pred_boxes2d_classes[i],
                ):
                    box2d = xyxy_to_box2d(*box.tolist())
                    if pred_instance_masks:
                        rle = mask_to_rle(
                            (masks[class_id] > 0.0).astype(np.uint8)
                        )
                    else:
                        rle = None

                    if pred_boxes2d_track_ids:
                        track_id = str(int(track_ids[0]))
                    else:
                        track_id = None

                    label = Label(
                        box2d=box2d,
                        category=(
                            self.inverse_cat_map[int(class_id)]
                            if self.inverse_cat_map != {}
                            else str(class_id)
                        ),
                        score=float(score),
                        rle=rle,
                        id=track_id,
                    )
                    labels.append(label)
                frame = Frame(
                    name=sample_name,
                    videoName=sequence_name,
                    frameIndex=frame_id,
                    labels=labels,
                )
                self.frames_det_2d.append(frame)
                self.sample_counts["det_2d"] += 1

    def gather(self, gather_func: GenericFunc) -> None:  # pragma: no cover
        """Gather variables in case of distributed setting (if needed).

        Args:
            gather_func (Callable[[Any], Any]): Gather function.
        """
        all_preds = gather_func(self.frames_det_2d)
        if all_preds is not None:
            self.frames_det_2d = list(itertools.chain(*all_preds))

    def evaluate(self, metric: str) -> tuple[MetricLogs, str]:
        """No evaluation locally."""
        return {}, "No evaluation locally."

    def save(self, metric: str, output_dir: str) -> None:
        """Save scalabel output to zip file.

        Raises:
            ValueError: If the number of samples in each category is not the
                same.
        """
        # Check if the sample counts are correct
        equal_size = True
        for key in self.sample_counts:
            if self.sample_counts[key] != len(self.frames_det_2d):
                equal_size = False
                break
        if not equal_size:
            raise ValueError(
                "The number of samples in each category is not the same."
            )

        # Save the 2D detection results
        if len(self.frames_det_2d) > 0:
            ds = Dataset(frames=self.frames_det_2d, groups=None, config=None)
            ds_bytes = json.dumps(ds.dict()).encode("utf-8")
            self.backend.set(
                f"{self.output_path}/det_2d.json", ds_bytes, mode="w"
            )

        self.backend.close()
        print(f"Saved the submission file at {self.output_path}.")