File size: 8,653 Bytes
9b33fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
"""NuScenes monocular dataset."""

from __future__ import annotations

import numpy as np
from tqdm import tqdm

from vis4d.common.imports import NUSCENES_AVAILABLE
from vis4d.common.logging import rank_zero_info
from vis4d.common.time import Timer
from vis4d.common.typing import ArgsType, DictStrAny
from vis4d.data.const import AxisMode
from vis4d.data.const import CommonKeys as K
from vis4d.data.typing import DictData

from .nuscenes import NuScenes, nuscenes_class_map
from .util import im_decode, print_class_histogram

if NUSCENES_AVAILABLE:
    from nuscenes import NuScenes as NuScenesDevkit
    from nuscenes.utils.splits import create_splits_scenes
else:
    raise ImportError("nusenes-devkit is not available.")


class NuScenesMono(NuScenes):
    """NuScenes monocular dataset."""

    def __init__(self, *args: ArgsType, **kwargs: ArgsType) -> None:
        """Initialize the dataset."""
        super().__init__(*args, **kwargs)

    # Needed for CBGS
    def get_cat_ids(self, idx: int) -> list[int]:
        """Return the samples."""
        return self.samples[idx]["CAM"]["annotations"]["boxes3d_classes"]

    def _filter_data(self, data: list[DictStrAny]) -> list[DictStrAny]:
        """Remove empty samples."""
        samples = []
        frequencies = {cat: 0 for cat in nuscenes_class_map}
        inv_nuscenes_class_map = {v: k for k, v in nuscenes_class_map.items()}

        t = Timer()
        for sample in data:
            (
                mask,
                boxes3d,
                boxes3d_classes,
                boxes3d_attributes,
                boxes3d_track_ids,
                boxes3d_velocities,
            ) = self._filter_boxes(sample["CAM"]["annotations"])

            sample["CAM"]["annotations"]["boxes3d"] = boxes3d
            sample["CAM"]["annotations"]["boxes3d_classes"] = boxes3d_classes
            sample["CAM"]["annotations"][
                "boxes3d_attributes"
            ] = boxes3d_attributes
            sample["CAM"]["annotations"][
                "boxes3d_track_ids"
            ] = boxes3d_track_ids
            sample["CAM"]["annotations"][
                "boxes3d_velocities"
            ] = boxes3d_velocities
            sample["CAM"]["annotations"]["boxes2d"] = sample["CAM"][
                "annotations"
            ]["boxes2d"][mask]

            for box3d_class in boxes3d_classes:
                frequencies[inv_nuscenes_class_map[box3d_class]] += 1

            if self.skip_empty_samples:
                if len(sample["CAM"]["annotations"]["boxes3d"]) > 0:
                    samples.append(sample)
            else:
                samples.append(sample)

        rank_zero_info(
            f"Preprocessing {len(data)} frames takes {t.time():.2f}"
            " seconds."
        )

        print_class_histogram(frequencies)

        if self.skip_empty_samples:
            rank_zero_info(
                f"Filtered {len(data) - len(samples)} empty frames."
            )

        return samples

    def __repr__(self) -> str:
        """Concise representation of the dataset."""
        return f"NuScenes Monocular Dataset {self.version} {self.split}"

    def _generate_data_mapping(self) -> list[DictStrAny]:
        """Generate data mapping.

        Returns:
            List[DictStrAny]: List of items required to load for a single
                dataset sample.
        """
        data = NuScenesDevkit(
            version=self.version, dataroot=self.data_root, verbose=False
        )

        frames = []
        instance_tokens: list[str] = []

        scene_names_per_split = create_splits_scenes()

        scenes = [
            scene
            for scene in data.scene
            if scene["name"] in scene_names_per_split[self.split]
        ]

        for scene in tqdm(scenes):
            scene_name = scene["name"]
            frame_ids = 0
            sample_token = scene["first_sample_token"]
            while sample_token:
                sample = data.get("sample", sample_token)

                # LIDAR data
                lidar_token = sample["data"]["LIDAR_TOP"]

                lidar_data = self._load_lidar_data(data, lidar_token)
                lidar_data["annotations"] = self._load_annotations(
                    data,
                    lidar_data["extrinsics"],
                    sample["anns"],
                    instance_tokens,
                )

                # TODO add RADAR, Map data

                # Get the sample data for each camera
                for cam in self.CAMERAS:
                    frame: DictStrAny = {}
                    frame["scene_name"] = f"{scene_name}_{cam}"
                    frame["token"] = sample["token"]
                    frame["frame_ids"] = frame_ids

                    frame["LIDAR_TOP"] = lidar_data

                    cam_token = sample["data"][cam]

                    frame["CAM"] = self._load_cam_data(data, cam_token)
                    frame["CAM"]["annotations"] = self._load_annotations(
                        data,
                        frame["CAM"]["extrinsics"],
                        sample["anns"],
                        instance_tokens,
                        axis_mode=AxisMode.OPENCV,
                        export_2d_annotations=True,
                        intrinsics=frame["CAM"]["intrinsics"],
                        image_hw=frame["CAM"]["image_hw"],
                    )

                    frames.append(frame)

                sample_token = sample["next"]
                frame_ids += 1

        return frames

    def __getitem__(self, idx: int) -> DictData:
        """Get single sample.

        Args:
            idx (int): Index of sample.

        Returns:
            DictData: sample at index in Vis4D input format.
        """
        sample = self.samples[idx]
        data_dict: DictData = {}

        if K.depth_maps in self.keys_to_load:
            lidar_data = sample["LIDAR_TOP"]

            points_bytes = self.data_backend.get(lidar_data["lidar_path"])
            points = np.frombuffer(points_bytes, dtype=np.float32)
            points = points.reshape(-1, 5)[:, :3]

        if K.depth_maps in self.keys_to_load:
            lidar_to_global = lidar_data["extrinsics"]

        # load camera frame
        data_dict = {
            "token": sample["token"],
            K.sequence_names: sample["scene_name"],
            K.frame_ids: sample["frame_ids"],
            K.timestamp: sample["CAM"]["timestamp"],
        }

        if K.images in self.keys_to_load:
            im_bytes = self.data_backend.get(sample["CAM"]["image_path"])
            image = np.ascontiguousarray(
                im_decode(im_bytes), dtype=np.float32
            )[None]

            data_dict[K.images] = image
            data_dict[K.input_hw] = sample["CAM"]["image_hw"]
            data_dict[K.sample_names] = sample["CAM"]["sample_name"]
            data_dict[K.intrinsics] = sample["CAM"]["intrinsics"]

        if K.original_images in self.keys_to_load:
            data_dict[K.original_images] = image
            data_dict[K.original_hw] = sample["CAM"]["image_hw"]

        if K.boxes3d in self.keys_to_load or K.boxes2d in self.keys_to_load:
            if K.boxes3d in self.keys_to_load:
                data_dict[K.boxes3d] = sample["CAM"]["annotations"]["boxes3d"]
                data_dict[K.boxes3d_classes] = sample["CAM"]["annotations"][
                    "boxes3d_classes"
                ]
                data_dict[K.boxes3d_track_ids] = sample["CAM"]["annotations"][
                    "boxes3d_track_ids"
                ]
                data_dict[K.boxes3d_velocities] = sample["CAM"]["annotations"][
                    "boxes3d_velocities"
                ]
                data_dict["attributes"] = sample["CAM"]["annotations"][
                    "boxes3d_attributes"
                ]
                data_dict[K.extrinsics] = sample["CAM"]["extrinsics"]
                data_dict[K.axis_mode] = AxisMode.OPENCV

            if K.boxes2d in self.keys_to_load:
                data_dict[K.boxes2d] = sample["CAM"]["annotations"]["boxes2d"]
                data_dict[K.boxes2d_classes] = data_dict[K.boxes3d_classes]
                data_dict[K.boxes2d_track_ids] = data_dict[K.boxes3d_track_ids]

        if K.depth_maps in self.keys_to_load:
            depth_maps = self._load_depth_map(
                points,
                lidar_to_global,
                sample["CAM"]["extrinsics"],
                sample["CAM"]["intrinsics"],
                sample["CAM"]["image_hw"],
            )

            data_dict[K.depth_maps] = depth_maps

        return data_dict