Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,10 @@
|
|
| 1 |
import os
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
|
| 6 |
os.system('git clone https://github.com/ggerganov/whisper.cpp.git')
|
| 7 |
os.system('make -C ./whisper.cpp')
|
| 8 |
-
|
| 9 |
-
# Download models, add finetuned languages later once whisper finetuning event is ready
|
| 10 |
-
# Models are downloaded on the fly so we can get quite many models :)
|
| 11 |
-
|
| 12 |
os.system('bash ./whisper.cpp/models/download-ggml-model.sh small')
|
| 13 |
os.system('bash ./whisper.cpp/models/download-ggml-model.sh base')
|
| 14 |
os.system('bash ./whisper.cpp/models/download-ggml-model.sh medium')
|
|
@@ -21,144 +17,149 @@ os.system('bash ./whisper.cpp/models/download-ggml-model.sh base.en')
|
|
| 21 |
#print("MOI")
|
| 22 |
|
| 23 |
|
| 24 |
-
|
| 25 |
import gradio as gr
|
| 26 |
from pathlib import Path
|
| 27 |
import pysrt
|
| 28 |
import pandas as pd
|
| 29 |
import re
|
| 30 |
import time
|
| 31 |
-
import os
|
| 32 |
-
import json
|
| 33 |
-
import requests
|
| 34 |
|
| 35 |
from pytube import YouTube
|
| 36 |
-
from transformers import MarianMTModel, MarianTokenizer
|
| 37 |
|
| 38 |
import psutil
|
| 39 |
num_cores = psutil.cpu_count()
|
| 40 |
os.environ["OMP_NUM_THREADS"] = f"{num_cores}"
|
| 41 |
headers = {'Authorization': os.environ['DeepL_API_KEY']}
|
| 42 |
|
|
|
|
|
|
|
|
|
|
| 43 |
whisper_models = ["base", "small", "medium", "large", "base.en"]
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
LANGUAGES = {
|
| 47 |
-
"en": "
|
| 48 |
-
"zh": "
|
| 49 |
-
"de": "
|
| 50 |
-
"es": "
|
| 51 |
-
"ru": "
|
| 52 |
-
"ko": "
|
| 53 |
-
"fr": "
|
| 54 |
-
"ja": "
|
| 55 |
-
"pt": "
|
| 56 |
-
"tr": "
|
| 57 |
-
"pl": "
|
| 58 |
-
"ca": "
|
| 59 |
-
"nl": "
|
| 60 |
-
"ar": "
|
| 61 |
-
"sv": "
|
| 62 |
-
"it": "
|
| 63 |
-
"id": "
|
| 64 |
-
"hi": "
|
| 65 |
-
"fi": "
|
| 66 |
-
"vi": "
|
| 67 |
-
"he": "
|
| 68 |
-
"uk": "
|
| 69 |
-
"el": "
|
| 70 |
-
"ms": "
|
| 71 |
-
"cs": "
|
| 72 |
-
"ro": "
|
| 73 |
-
"da": "
|
| 74 |
-
"hu": "
|
| 75 |
-
"ta": "
|
| 76 |
-
"no": "
|
| 77 |
-
"th": "
|
| 78 |
-
"ur": "
|
| 79 |
-
"hr": "
|
| 80 |
-
"bg": "
|
| 81 |
-
"lt": "
|
| 82 |
-
"la": "
|
| 83 |
-
"mi": "
|
| 84 |
-
"ml": "
|
| 85 |
-
"cy": "
|
| 86 |
-
"sk": "
|
| 87 |
-
"te": "
|
| 88 |
-
"fa": "
|
| 89 |
-
"lv": "
|
| 90 |
-
"bn": "
|
| 91 |
-
"sr": "
|
| 92 |
-
"az": "
|
| 93 |
-
"sl": "
|
| 94 |
-
"kn": "
|
| 95 |
-
"et": "
|
| 96 |
-
"mk": "
|
| 97 |
-
"br": "
|
| 98 |
-
"eu": "
|
| 99 |
-
"is": "
|
| 100 |
-
"hy": "
|
| 101 |
-
"ne": "
|
| 102 |
-
"mn": "
|
| 103 |
-
"bs": "
|
| 104 |
-
"kk": "
|
| 105 |
-
"sq": "
|
| 106 |
-
"sw": "
|
| 107 |
-
"gl": "
|
| 108 |
-
"mr": "
|
| 109 |
-
"pa": "
|
| 110 |
-
"si": "
|
| 111 |
-
"km": "
|
| 112 |
-
"sn": "
|
| 113 |
-
"yo": "
|
| 114 |
-
"so": "
|
| 115 |
-
"af": "
|
| 116 |
-
"oc": "
|
| 117 |
-
"ka": "
|
| 118 |
-
"be": "
|
| 119 |
-
"tg": "
|
| 120 |
-
"sd": "
|
| 121 |
-
"gu": "
|
| 122 |
-
"am": "
|
| 123 |
-
"yi": "
|
| 124 |
-
"lo": "
|
| 125 |
-
"uz": "
|
| 126 |
-
"fo": "
|
| 127 |
-
"ht": "
|
| 128 |
-
"ps": "
|
| 129 |
-
"tk": "
|
| 130 |
-
"nn": "
|
| 131 |
-
"mt": "
|
| 132 |
-
"sa": "
|
| 133 |
-
"lb": "
|
| 134 |
-
"my": "
|
| 135 |
-
"bo": "
|
| 136 |
-
"tl": "
|
| 137 |
-
"mg": "
|
| 138 |
-
"as": "
|
| 139 |
-
"tt": "
|
| 140 |
-
"haw": "
|
| 141 |
-
"ln": "
|
| 142 |
-
"ha": "
|
| 143 |
-
"ba": "
|
| 144 |
-
"jw": "
|
| 145 |
-
"su": "
|
| 146 |
}
|
| 147 |
|
| 148 |
# language code lookup by name, with a few language aliases
|
| 149 |
source_languages = {
|
| 150 |
**{language: code for code, language in LANGUAGES.items()},
|
| 151 |
-
"
|
| 152 |
-
"
|
| 153 |
-
"
|
| 154 |
-
"
|
| 155 |
-
"
|
| 156 |
-
"
|
| 157 |
-
"
|
| 158 |
-
"
|
| 159 |
-
"
|
| 160 |
-
"
|
| 161 |
-
"
|
| 162 |
"Let the model analyze": "Let the model analyze"
|
| 163 |
}
|
| 164 |
|
|
@@ -193,12 +194,16 @@ DeepL_language_codes_for_translation = {
|
|
| 193 |
}
|
| 194 |
|
| 195 |
|
| 196 |
-
|
| 197 |
transcribe_options = dict(beam_size=3, best_of=3, without_timestamps=False)
|
| 198 |
|
| 199 |
|
| 200 |
source_language_list = [key[0] for key in source_languages.items()]
|
| 201 |
translation_models_list = [key[0] for key in DeepL_language_codes_for_translation.items()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
videos_out_path = Path("./videos_out")
|
| 204 |
videos_out_path.mkdir(parents=True, exist_ok=True)
|
|
@@ -228,7 +233,7 @@ def speech_to_text(video_file_path, selected_source_lang, whisper_model):
|
|
| 228 |
This space is using c++ implementation by https://github.com/ggerganov/whisper.cpp
|
| 229 |
"""
|
| 230 |
|
| 231 |
-
|
| 232 |
raise ValueError("Error no video input")
|
| 233 |
print(video_file_path)
|
| 234 |
try:
|
|
@@ -244,9 +249,12 @@ def speech_to_text(video_file_path, selected_source_lang, whisper_model):
|
|
| 244 |
srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt"
|
| 245 |
os.system(f'rm -f {srt_path}')
|
| 246 |
if selected_source_lang == "Let the model analyze":
|
| 247 |
-
os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt')
|
| 248 |
else:
|
| 249 |
-
|
|
|
|
|
|
|
|
|
|
| 250 |
print("starting whisper done with whisper")
|
| 251 |
except Exception as e:
|
| 252 |
raise RuntimeError("Error converting video to audio")
|
|
@@ -294,7 +302,7 @@ def speech_to_text(video_file_path, selected_source_lang, whisper_model):
|
|
| 294 |
|
| 295 |
def translate_transcriptions(df, selected_translation_lang_2):
|
| 296 |
if selected_translation_lang_2 is None:
|
| 297 |
-
selected_translation_lang_2 = '
|
| 298 |
df.reset_index(inplace=True)
|
| 299 |
|
| 300 |
print("start_translation")
|
|
@@ -313,35 +321,61 @@ def translate_transcriptions(df, selected_translation_lang_2):
|
|
| 313 |
'tag_spitting': 'xml',
|
| 314 |
'target_lang': DeepL_language_codes_for_translation.get(selected_translation_lang_2)
|
| 315 |
}
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
# Print the response from the server
|
| 319 |
-
translated_sentences = json.loads(response.text)
|
| 320 |
-
translated_sentences = translated_sentences['translations'][0]['text'].split('\n')
|
| 321 |
-
df['translation'] = translated_sentences
|
| 322 |
-
|
| 323 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
print("translations done")
|
| 325 |
|
| 326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
|
|
|
|
| 328 |
|
| 329 |
-
|
|
|
|
| 330 |
|
| 331 |
-
print("Starting creation of video wit srt")
|
| 332 |
-
print("video in path is:")
|
| 333 |
-
print(video_in)
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
with open('testi.srt','w', encoding="utf-8") as file:
|
| 337 |
for i in range(len(df)):
|
| 338 |
file.write(str(i+1))
|
| 339 |
file.write('\n')
|
| 340 |
start = df.iloc[i]['start']
|
| 341 |
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
file.write(f"{start}")
|
| 345 |
|
| 346 |
stop = df.iloc[i]['end']
|
| 347 |
|
|
@@ -353,30 +387,50 @@ def create_srt_and_burn(df, video_in):
|
|
| 353 |
if int(i) != len(df)-1:
|
| 354 |
file.write('\n\n')
|
| 355 |
|
| 356 |
-
print("SRT DONE")
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
|
| 361 |
-
|
| 362 |
-
# Strips the newline character
|
| 363 |
-
for line in Lines:
|
| 364 |
-
count += 1
|
| 365 |
-
print("{}".format(line))
|
| 366 |
-
|
| 367 |
-
print(type(video_in))
|
| 368 |
-
print(video_in)
|
| 369 |
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
|
| 381 |
|
| 382 |
# ---- Gradio Layout -----
|
|
@@ -386,7 +440,7 @@ video_out = gr.Video(label="Video Out", mirror_webcam=False)
|
|
| 386 |
|
| 387 |
|
| 388 |
|
| 389 |
-
df_init = pd.DataFrame(columns=['start','end','text'])
|
| 390 |
|
| 391 |
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="Let the model analyze", label="Spoken language in video", interactive=True)
|
| 392 |
selected_translation_lang_2 = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="In which language you want the transcriptions?", interactive=True)
|
|
@@ -395,6 +449,15 @@ selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value
|
|
| 395 |
transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
|
| 396 |
transcription_and_translation_df = gr.DataFrame(value=df_init,label="Transcription and translation dataframe", max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
|
| 397 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
|
| 399 |
demo = gr.Blocks(css='''
|
| 400 |
#cut_btn, #reset_btn { align-self:stretch; }
|
|
@@ -464,21 +527,28 @@ with demo:
|
|
| 464 |
##### Here you will can translate transcriptions to 26 languages.
|
| 465 |
##### If spoken language is not in the list, translation might not work. In this case original transcriptions are used
|
| 466 |
##### ''')
|
| 467 |
-
|
| 468 |
translate_transcriptions_button = gr.Button("Step 3. Translate transcription")
|
| 469 |
-
translate_transcriptions_button.click(translate_transcriptions, [transcription_df, selected_translation_lang_2], transcription_and_translation_df)
|
| 470 |
transcription_and_translation_df.render()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
|
| 472 |
with gr.Row():
|
| 473 |
with gr.Column():
|
| 474 |
gr.Markdown('''
|
| 475 |
##### Now press the Step 4. Button to create output video with translated transcriptions
|
| 476 |
##### ''')
|
| 477 |
-
|
| 478 |
print(video_in)
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
|
|
|
|
|
|
| 482 |
|
| 483 |
|
| 484 |
demo.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
+
import requests
|
| 3 |
+
import json
|
| 4 |
+
import base64
|
| 5 |
|
| 6 |
os.system('git clone https://github.com/ggerganov/whisper.cpp.git')
|
| 7 |
os.system('make -C ./whisper.cpp')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
os.system('bash ./whisper.cpp/models/download-ggml-model.sh small')
|
| 9 |
os.system('bash ./whisper.cpp/models/download-ggml-model.sh base')
|
| 10 |
os.system('bash ./whisper.cpp/models/download-ggml-model.sh medium')
|
|
|
|
| 17 |
#print("MOI")
|
| 18 |
|
| 19 |
|
|
|
|
| 20 |
import gradio as gr
|
| 21 |
from pathlib import Path
|
| 22 |
import pysrt
|
| 23 |
import pandas as pd
|
| 24 |
import re
|
| 25 |
import time
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
from pytube import YouTube
|
| 28 |
+
#from transformers import MarianMTModel, MarianTokenizer
|
| 29 |
|
| 30 |
import psutil
|
| 31 |
num_cores = psutil.cpu_count()
|
| 32 |
os.environ["OMP_NUM_THREADS"] = f"{num_cores}"
|
| 33 |
headers = {'Authorization': os.environ['DeepL_API_KEY']}
|
| 34 |
|
| 35 |
+
|
| 36 |
+
import torch
|
| 37 |
+
|
| 38 |
whisper_models = ["base", "small", "medium", "large", "base.en"]
|
| 39 |
|
| 40 |
+
custom_models = ["belarus-small"]
|
| 41 |
+
|
| 42 |
+
combined_models = []
|
| 43 |
+
combined_models.extend(whisper_models)
|
| 44 |
+
combined_models.extend(custom_models)
|
| 45 |
+
|
| 46 |
|
| 47 |
LANGUAGES = {
|
| 48 |
+
"en": "English",
|
| 49 |
+
"zh": "Chinese",
|
| 50 |
+
"de": "German",
|
| 51 |
+
"es": "Spanish",
|
| 52 |
+
"ru": "Russian",
|
| 53 |
+
"ko": "Korean",
|
| 54 |
+
"fr": "French",
|
| 55 |
+
"ja": "Japanese",
|
| 56 |
+
"pt": "Portuguese",
|
| 57 |
+
"tr": "Turkish",
|
| 58 |
+
"pl": "Polish",
|
| 59 |
+
"ca": "Catalan",
|
| 60 |
+
"nl": "Dutch",
|
| 61 |
+
"ar": "Arabic",
|
| 62 |
+
"sv": "Swedish",
|
| 63 |
+
"it": "Italian",
|
| 64 |
+
"id": "Indonesian",
|
| 65 |
+
"hi": "Hindi",
|
| 66 |
+
"fi": "Finnish",
|
| 67 |
+
"vi": "Vietnamese",
|
| 68 |
+
"he": "Hebrew",
|
| 69 |
+
"uk": "Ukrainian",
|
| 70 |
+
"el": "Greek",
|
| 71 |
+
"ms": "Malay",
|
| 72 |
+
"cs": "Czech",
|
| 73 |
+
"ro": "Romanian",
|
| 74 |
+
"da": "Danish",
|
| 75 |
+
"hu": "Hungarian",
|
| 76 |
+
"ta": "Tamil",
|
| 77 |
+
"no": "Norwegian",
|
| 78 |
+
"th": "Thai",
|
| 79 |
+
"ur": "Urdu",
|
| 80 |
+
"hr": "Croatian",
|
| 81 |
+
"bg": "Bulgarian",
|
| 82 |
+
"lt": "Lithuanian",
|
| 83 |
+
"la": "Latin",
|
| 84 |
+
"mi": "Maori",
|
| 85 |
+
"ml": "Malayalam",
|
| 86 |
+
"cy": "Welsh",
|
| 87 |
+
"sk": "Slovak",
|
| 88 |
+
"te": "Telugu",
|
| 89 |
+
"fa": "Persian",
|
| 90 |
+
"lv": "Latvian",
|
| 91 |
+
"bn": "Bengali",
|
| 92 |
+
"sr": "Serbian",
|
| 93 |
+
"az": "Azerbaijani",
|
| 94 |
+
"sl": "Slovenian",
|
| 95 |
+
"kn": "Kannada",
|
| 96 |
+
"et": "Estonian",
|
| 97 |
+
"mk": "Macedonian",
|
| 98 |
+
"br": "Breton",
|
| 99 |
+
"eu": "Basque",
|
| 100 |
+
"is": "Icelandic",
|
| 101 |
+
"hy": "Armenian",
|
| 102 |
+
"ne": "Nepali",
|
| 103 |
+
"mn": "Mongolian",
|
| 104 |
+
"bs": "Bosnian",
|
| 105 |
+
"kk": "Kazakh",
|
| 106 |
+
"sq": "Albanian",
|
| 107 |
+
"sw": "Swahili",
|
| 108 |
+
"gl": "Galician",
|
| 109 |
+
"mr": "Marathi",
|
| 110 |
+
"pa": "Punjabi",
|
| 111 |
+
"si": "Sinhala",
|
| 112 |
+
"km": "Khmer",
|
| 113 |
+
"sn": "Shona",
|
| 114 |
+
"yo": "Yoruba",
|
| 115 |
+
"so": "Somali",
|
| 116 |
+
"af": "Afrikaans",
|
| 117 |
+
"oc": "Occitan",
|
| 118 |
+
"ka": "Georgian",
|
| 119 |
+
"be": "Belarusian",
|
| 120 |
+
"tg": "Tajik",
|
| 121 |
+
"sd": "Sindhi",
|
| 122 |
+
"gu": "Gujarati",
|
| 123 |
+
"am": "Amharic",
|
| 124 |
+
"yi": "Yiddish",
|
| 125 |
+
"lo": "Lao",
|
| 126 |
+
"uz": "Uzbek",
|
| 127 |
+
"fo": "Faroese",
|
| 128 |
+
"ht": "Haitian creole",
|
| 129 |
+
"ps": "Pashto",
|
| 130 |
+
"tk": "Turkmen",
|
| 131 |
+
"nn": "Nynorsk",
|
| 132 |
+
"mt": "Maltese",
|
| 133 |
+
"sa": "Sanskrit",
|
| 134 |
+
"lb": "Luxembourgish",
|
| 135 |
+
"my": "Myanmar",
|
| 136 |
+
"bo": "Tibetan",
|
| 137 |
+
"tl": "Tagalog",
|
| 138 |
+
"mg": "Malagasy",
|
| 139 |
+
"as": "Assamese",
|
| 140 |
+
"tt": "Tatar",
|
| 141 |
+
"haw": "Hawaiian",
|
| 142 |
+
"ln": "Lingala",
|
| 143 |
+
"ha": "Hausa",
|
| 144 |
+
"ba": "Bashkir",
|
| 145 |
+
"jw": "Javanese",
|
| 146 |
+
"su": "Sundanese",
|
| 147 |
}
|
| 148 |
|
| 149 |
# language code lookup by name, with a few language aliases
|
| 150 |
source_languages = {
|
| 151 |
**{language: code for code, language in LANGUAGES.items()},
|
| 152 |
+
"Burmese": "my",
|
| 153 |
+
"Valencian": "ca",
|
| 154 |
+
"Flemish": "nl",
|
| 155 |
+
"Haitian": "ht",
|
| 156 |
+
"Letzeburgesch": "lb",
|
| 157 |
+
"Pushto": "ps",
|
| 158 |
+
"Panjabi": "pa",
|
| 159 |
+
"Moldavian": "ro",
|
| 160 |
+
"Moldovan": "ro",
|
| 161 |
+
"Sinhalese": "si",
|
| 162 |
+
"Castilian": "es",
|
| 163 |
"Let the model analyze": "Let the model analyze"
|
| 164 |
}
|
| 165 |
|
|
|
|
| 194 |
}
|
| 195 |
|
| 196 |
|
|
|
|
| 197 |
transcribe_options = dict(beam_size=3, best_of=3, without_timestamps=False)
|
| 198 |
|
| 199 |
|
| 200 |
source_language_list = [key[0] for key in source_languages.items()]
|
| 201 |
translation_models_list = [key[0] for key in DeepL_language_codes_for_translation.items()]
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 205 |
+
print("DEVICE IS: ")
|
| 206 |
+
print(device)
|
| 207 |
|
| 208 |
videos_out_path = Path("./videos_out")
|
| 209 |
videos_out_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
| 233 |
This space is using c++ implementation by https://github.com/ggerganov/whisper.cpp
|
| 234 |
"""
|
| 235 |
|
| 236 |
+
if(video_file_path == None):
|
| 237 |
raise ValueError("Error no video input")
|
| 238 |
print(video_file_path)
|
| 239 |
try:
|
|
|
|
| 249 |
srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt"
|
| 250 |
os.system(f'rm -f {srt_path}')
|
| 251 |
if selected_source_lang == "Let the model analyze":
|
| 252 |
+
os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -l "auto" -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt')
|
| 253 |
else:
|
| 254 |
+
if whisper_model in custom_models:
|
| 255 |
+
os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -l {source_languages.get(selected_source_lang)} -m ./converted_models/ggml-{whisper_model}.bin -osrt')
|
| 256 |
+
else:
|
| 257 |
+
os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -l {source_languages.get(selected_source_lang)} -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt')
|
| 258 |
print("starting whisper done with whisper")
|
| 259 |
except Exception as e:
|
| 260 |
raise RuntimeError("Error converting video to audio")
|
|
|
|
| 302 |
|
| 303 |
def translate_transcriptions(df, selected_translation_lang_2):
|
| 304 |
if selected_translation_lang_2 is None:
|
| 305 |
+
selected_translation_lang_2 = 'English'
|
| 306 |
df.reset_index(inplace=True)
|
| 307 |
|
| 308 |
print("start_translation")
|
|
|
|
| 321 |
'tag_spitting': 'xml',
|
| 322 |
'target_lang': DeepL_language_codes_for_translation.get(selected_translation_lang_2)
|
| 323 |
}
|
| 324 |
+
try:
|
| 325 |
+
response = requests.post('https://api-free.deepl.com/v2/translate', headers=headers, data=data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
|
| 327 |
+
# Print the response from the server
|
| 328 |
+
translated_sentences = json.loads(response.text)
|
| 329 |
+
translated_sentences = translated_sentences['translations'][0]['text'].split('\n')
|
| 330 |
+
df['translation'] = translated_sentences
|
| 331 |
+
except Exception as e:
|
| 332 |
+
print("EXCEPTION WITH DEEPL API")
|
| 333 |
+
print(e)
|
| 334 |
+
df['translation'] = df['text']
|
| 335 |
+
|
| 336 |
print("translations done")
|
| 337 |
|
| 338 |
+
print("Starting SRT-file creation")
|
| 339 |
+
print(df.head())
|
| 340 |
+
df.reset_index(inplace=True)
|
| 341 |
+
with open('subtitles.vtt','w', encoding="utf-8") as file:
|
| 342 |
+
print("Starting WEBVTT-file creation")
|
| 343 |
+
|
| 344 |
+
for i in range(len(df)):
|
| 345 |
+
if i == 0:
|
| 346 |
+
file.write('WEBVTT')
|
| 347 |
+
file.write('\n')
|
| 348 |
+
|
| 349 |
+
else:
|
| 350 |
+
file.write(str(i+1))
|
| 351 |
+
file.write('\n')
|
| 352 |
+
start = df.iloc[i]['start']
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
file.write(f"{start.strip()}")
|
| 356 |
+
|
| 357 |
+
stop = df.iloc[i]['end']
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
file.write(' --> ')
|
| 361 |
+
file.write(f"{stop}")
|
| 362 |
+
file.write('\n')
|
| 363 |
+
file.writelines(df.iloc[i]['translation'])
|
| 364 |
+
if int(i) != len(df)-1:
|
| 365 |
+
file.write('\n\n')
|
| 366 |
|
| 367 |
+
print("WEBVTT DONE")
|
| 368 |
|
| 369 |
+
with open('subtitles.srt','w', encoding="utf-8") as file:
|
| 370 |
+
print("Starting SRT-file creation")
|
| 371 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
for i in range(len(df)):
|
| 373 |
file.write(str(i+1))
|
| 374 |
file.write('\n')
|
| 375 |
start = df.iloc[i]['start']
|
| 376 |
|
| 377 |
+
|
| 378 |
+
file.write(f"{start.strip()}")
|
|
|
|
| 379 |
|
| 380 |
stop = df.iloc[i]['end']
|
| 381 |
|
|
|
|
| 387 |
if int(i) != len(df)-1:
|
| 388 |
file.write('\n\n')
|
| 389 |
|
| 390 |
+
print("SRT DONE")
|
| 391 |
+
subtitle_files = ['subtitles.vtt','subtitles.srt']
|
| 392 |
+
|
| 393 |
+
return df, subtitle_files
|
| 394 |
+
|
| 395 |
+
# def burn_srt_to_video(srt_file, video_in):
|
| 396 |
+
|
| 397 |
+
# print("Starting creation of video wit srt")
|
| 398 |
+
|
| 399 |
+
# try:
|
| 400 |
+
# video_out = video_in.replace('.mp4', '_out.mp4')
|
| 401 |
+
# print(os.system('ls -lrth'))
|
| 402 |
+
# print(video_in)
|
| 403 |
+
# print(video_out)
|
| 404 |
+
# command = 'ffmpeg -i "{}" -y -vf subtitles=./subtitles.srt "{}"'.format(video_in, video_out)
|
| 405 |
+
# os.system(command)
|
| 406 |
|
| 407 |
+
# return video_out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
|
| 409 |
+
# except Exception as e:
|
| 410 |
+
# print(e)
|
| 411 |
+
# return video_out
|
| 412 |
+
|
| 413 |
+
def create_video_player(subtitle_files, video_in):
|
| 414 |
+
|
| 415 |
+
with open(video_in, "rb") as file:
|
| 416 |
+
video_base64 = base64.b64encode(file.read())
|
| 417 |
+
with open('./subtitles.vtt', "rb") as file:
|
| 418 |
+
subtitle_base64 = base64.b64encode(file.read())
|
| 419 |
+
|
| 420 |
+
video_player = f'''<video id="video" controls preload="metadata">
|
| 421 |
+
<source src="data:video/mp4;base64,{str(video_base64)[2:-1]}" type="video/mp4" />
|
| 422 |
+
<track
|
| 423 |
+
label="English"
|
| 424 |
+
kind="subtitles"
|
| 425 |
+
srclang="en"
|
| 426 |
+
src="data:text/vtt;base64,{str(subtitle_base64)[2:-1]}"
|
| 427 |
+
default />
|
| 428 |
+
</video>
|
| 429 |
+
'''
|
| 430 |
+
#video_player = gr.HTML(video_player)
|
| 431 |
+
return video_player
|
| 432 |
+
|
| 433 |
+
|
| 434 |
|
| 435 |
|
| 436 |
# ---- Gradio Layout -----
|
|
|
|
| 440 |
|
| 441 |
|
| 442 |
|
| 443 |
+
df_init = pd.DataFrame(columns=['start','end','text', 'translation'])
|
| 444 |
|
| 445 |
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="Let the model analyze", label="Spoken language in video", interactive=True)
|
| 446 |
selected_translation_lang_2 = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="In which language you want the transcriptions?", interactive=True)
|
|
|
|
| 449 |
transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
|
| 450 |
transcription_and_translation_df = gr.DataFrame(value=df_init,label="Transcription and translation dataframe", max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
|
| 451 |
|
| 452 |
+
subtitle_files = gr.File(
|
| 453 |
+
label="Download srt-file",
|
| 454 |
+
file_count="multiple",
|
| 455 |
+
type="file",
|
| 456 |
+
interactive=False,
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
video_player = gr.HTML('<p>video will be played here after you press the button at step 4')
|
| 460 |
+
|
| 461 |
|
| 462 |
demo = gr.Blocks(css='''
|
| 463 |
#cut_btn, #reset_btn { align-self:stretch; }
|
|
|
|
| 527 |
##### Here you will can translate transcriptions to 26 languages.
|
| 528 |
##### If spoken language is not in the list, translation might not work. In this case original transcriptions are used
|
| 529 |
##### ''')
|
| 530 |
+
selected_translation_lang_2.render()
|
| 531 |
translate_transcriptions_button = gr.Button("Step 3. Translate transcription")
|
| 532 |
+
translate_transcriptions_button.click(translate_transcriptions, [transcription_df, selected_translation_lang_2], [transcription_and_translation_df, subtitle_files])
|
| 533 |
transcription_and_translation_df.render()
|
| 534 |
+
|
| 535 |
+
with gr.Row():
|
| 536 |
+
with gr.Column():
|
| 537 |
+
gr.Markdown('''##### From here you can download the srt-file ''')
|
| 538 |
+
subtitle_files.render()
|
| 539 |
|
| 540 |
with gr.Row():
|
| 541 |
with gr.Column():
|
| 542 |
gr.Markdown('''
|
| 543 |
##### Now press the Step 4. Button to create output video with translated transcriptions
|
| 544 |
##### ''')
|
| 545 |
+
create_video_button = gr.Button("Step 4. Create and add subtitles to video")
|
| 546 |
print(video_in)
|
| 547 |
+
create_video_button.click(create_video_player, [subtitle_files,video_in], [
|
| 548 |
+
video_player])
|
| 549 |
+
video_player.render()
|
| 550 |
+
|
| 551 |
+
|
| 552 |
|
| 553 |
|
| 554 |
demo.launch()
|