Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,99 +1,296 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
-
import gradio as gr
|
6 |
-
import matplotlib.pyplot as plt
|
|
|
|
|
7 |
|
8 |
-
# Model setup
|
9 |
-
device = torch.device('
|
10 |
-
dtype = torch.float32
|
11 |
-
model_name_or_path = 'GoodBaiBai88/M3D-LaMed-Phi-3-4B'
|
12 |
-
proj_out_num = 256
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
model_name_or_path,
|
17 |
-
torch_dtype=torch.float32,
|
18 |
-
device_map='cpu',
|
19 |
-
trust_remote_code=True
|
20 |
-
)
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
ax.imshow(npy_data[i], cmap='gray')
|
44 |
-
ax.axis('off')
|
45 |
-
|
46 |
-
image_output = "extracted_images.png"
|
47 |
-
plt.savefig(image_output, bbox_inches='tight')
|
48 |
-
plt.close()
|
49 |
-
return image_output
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
def
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
def chat_interface(question):
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
def
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
80 |
|
81 |
-
#
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
chat_list = gr.Chatbot(value=[], label="Chat History", type='messages', elem_id="chat-history") # Dynamic chat with messages type
|
88 |
-
uploaded_image = gr.File(label="Upload .npy Image", type="filepath")
|
89 |
-
upload_status = gr.Textbox(label="Status", interactive=False)
|
90 |
-
extracted_image = gr.Image(label="Extracted Images")
|
91 |
-
question_input = gr.Textbox(label="Ask a question", placeholder="Ask something about the image...")
|
92 |
-
submit_button = gr.Button("Send")
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import gradio as gr
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from datetime import datetime
|
8 |
+
import json
|
9 |
|
10 |
+
# Model setup
|
11 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
+
dtype = torch.float32
|
13 |
+
model_name_or_path = 'GoodBaiBai88/M3D-LaMed-Phi-3-4B'
|
14 |
+
proj_out_num = 256
|
15 |
|
16 |
+
# Create directory for saving chat histories
|
17 |
+
os.makedirs('chat_histories', exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Load model and tokenizer
|
20 |
+
print("Loading model and tokenizer...")
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(
|
22 |
+
model_name_or_path,
|
23 |
+
torch_dtype=torch.float32,
|
24 |
+
device_map=device,
|
25 |
+
trust_remote_code=True
|
26 |
+
)
|
27 |
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
29 |
+
model_name_or_path,
|
30 |
+
model_max_length=512,
|
31 |
+
padding_side="right",
|
32 |
+
use_fast=False,
|
33 |
+
trust_remote_code=True
|
34 |
+
)
|
35 |
+
print("Model loaded successfully!")
|
36 |
|
37 |
+
# Chat and image storage
|
38 |
+
chat_history = []
|
39 |
+
current_image = None
|
40 |
+
session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
|
41 |
+
chat_metadata = {
|
42 |
+
"session_id": session_id,
|
43 |
+
"start_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
44 |
+
"image_info": None
|
45 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
def save_chat_history():
|
48 |
+
"""Save the current chat history to a JSON file"""
|
49 |
+
if not chat_history:
|
50 |
+
return
|
51 |
+
|
52 |
+
filename = f"chat_histories/session_{session_id}.json"
|
53 |
+
data = {
|
54 |
+
"metadata": chat_metadata,
|
55 |
+
"conversation": [{"user": q, "assistant": a} for q, a in chat_history]
|
56 |
+
}
|
57 |
+
|
58 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
59 |
+
json.dump(data, f, ensure_ascii=False, indent=2)
|
60 |
+
|
61 |
+
return filename
|
62 |
|
63 |
+
def extract_and_display_images(image_path):
|
64 |
+
"""Process .npy file and create a visualization of the medical images"""
|
65 |
+
try:
|
66 |
+
npy_data = np.load(image_path)
|
67 |
+
|
68 |
+
# Handle different possible shapes of the .npy file
|
69 |
+
if npy_data.ndim == 4 and npy_data.shape[1] == 32:
|
70 |
+
npy_data = npy_data[0] # Extract first batch if batched
|
71 |
+
elif npy_data.ndim != 3 or npy_data.shape[0] != 32:
|
72 |
+
return None, "Invalid .npy file format. Expected shape (1, 32, 256, 256) or (32, 256, 256)."
|
73 |
+
|
74 |
+
# Update metadata with image information
|
75 |
+
global chat_metadata
|
76 |
+
chat_metadata["image_info"] = {
|
77 |
+
"filename": os.path.basename(image_path),
|
78 |
+
"shape": npy_data.shape,
|
79 |
+
"processed_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
80 |
+
}
|
81 |
+
|
82 |
+
# Normalize for better visualization if needed
|
83 |
+
for i in range(npy_data.shape[0]):
|
84 |
+
slice_data = npy_data[i]
|
85 |
+
if slice_data.max() > 0: # Avoid division by zero
|
86 |
+
npy_data[i] = (slice_data - slice_data.min()) / (slice_data.max() - slice_data.min())
|
87 |
+
|
88 |
+
# Create grid visualization
|
89 |
+
rows, cols = 4, 8
|
90 |
+
fig, axes = plt.subplots(rows, cols, figsize=(16, 8))
|
91 |
+
for i, ax in enumerate(axes.flat):
|
92 |
+
if i < npy_data.shape[0]:
|
93 |
+
ax.imshow(npy_data[i], cmap='gray')
|
94 |
+
ax.set_title(f"Slice {i+1}", fontsize=8)
|
95 |
+
ax.axis('off')
|
96 |
+
|
97 |
+
plt.tight_layout()
|
98 |
+
image_output = f"temp_images/extracted_{session_id}.png"
|
99 |
+
os.makedirs("temp_images", exist_ok=True)
|
100 |
+
plt.savefig(image_output, bbox_inches='tight', dpi=150)
|
101 |
+
plt.close()
|
102 |
+
|
103 |
+
return image_output, "Image processed successfully!"
|
104 |
+
except Exception as e:
|
105 |
+
return None, f"Error processing image: {str(e)}"
|
106 |
|
107 |
+
def process_image(question):
|
108 |
+
"""Process a question about the current medical image using the AI model"""
|
109 |
+
global current_image
|
110 |
+
|
111 |
+
if current_image is None:
|
112 |
+
return "Please upload a medical image (.npy file) first."
|
113 |
+
|
114 |
+
try:
|
115 |
+
# Load the image data
|
116 |
+
image_np = np.load(current_image)
|
117 |
+
|
118 |
+
# Prepare input for the model
|
119 |
+
image_tokens = "<im_patch>" * proj_out_num
|
120 |
+
input_txt = image_tokens + question
|
121 |
+
input_id = tokenizer(input_txt, return_tensors="pt")['input_ids'].to(device=device)
|
122 |
+
|
123 |
+
# Convert image to tensor
|
124 |
+
image_pt = torch.from_numpy(image_np).unsqueeze(0).to(dtype=dtype, device=device)
|
125 |
+
|
126 |
+
# Generate response from model
|
127 |
+
generation = model.generate(
|
128 |
+
image_pt,
|
129 |
+
input_id,
|
130 |
+
max_new_tokens=256,
|
131 |
+
do_sample=True,
|
132 |
+
top_p=0.9,
|
133 |
+
temperature=0.8 # Slightly reduced for more consistent responses
|
134 |
+
)
|
135 |
+
|
136 |
+
# Decode the generated text
|
137 |
+
generated_text = tokenizer.batch_decode(generation, skip_special_tokens=True)[0]
|
138 |
+
|
139 |
+
# Remove the input prompt from the response if needed
|
140 |
+
if image_tokens in generated_text:
|
141 |
+
generated_text = generated_text.split(image_tokens)[-1]
|
142 |
+
|
143 |
+
return generated_text
|
144 |
+
|
145 |
+
except Exception as e:
|
146 |
+
return f"Error processing your question: {str(e)}"
|
147 |
|
148 |
+
def chat_interface(question):
|
149 |
+
"""Handle the chat interface and maintain conversation history"""
|
150 |
+
global chat_history
|
151 |
+
|
152 |
+
if not question.strip():
|
153 |
+
return chat_history
|
154 |
+
|
155 |
+
# Process the question
|
156 |
+
response = process_image(question)
|
157 |
+
|
158 |
+
# Add to chat history
|
159 |
+
chat_history.append((question, response))
|
160 |
+
|
161 |
+
# Save chat history periodically
|
162 |
+
save_chat_history()
|
163 |
+
|
164 |
+
# Return the updated chat history for display
|
165 |
+
return chat_history
|
166 |
|
167 |
+
def upload_image(image):
|
168 |
+
"""Handle image upload and processing"""
|
169 |
+
global current_image
|
170 |
+
|
171 |
+
if image is None:
|
172 |
+
return "No file uploaded.", None
|
173 |
+
|
174 |
+
# Check if file exists and is .npy
|
175 |
+
if not os.path.exists(image.name) or not image.name.lower().endswith('.npy'):
|
176 |
+
return "Please upload a valid .npy file.", None
|
177 |
+
|
178 |
+
# Set as current image
|
179 |
+
current_image = image.name
|
180 |
+
|
181 |
+
# Process and extract images
|
182 |
+
extracted_image_path, status_message = extract_and_display_images(current_image)
|
183 |
+
|
184 |
+
if extracted_image_path is None:
|
185 |
+
return status_message, None
|
186 |
+
|
187 |
+
return status_message, extracted_image_path
|
188 |
|
189 |
+
def clear_conversation():
|
190 |
+
"""Clear the current conversation history"""
|
191 |
+
global chat_history
|
192 |
+
old_history = chat_history.copy()
|
193 |
+
chat_history = []
|
194 |
+
return [], f"Conversation cleared. Previous conversation saved to {save_chat_history()}"
|
195 |
|
196 |
+
# CSS for better UI
|
197 |
+
custom_css = """
|
198 |
+
.gradio-container {max-width: 1200px !important}
|
199 |
+
#chat-history {height: 400px; overflow-y: auto;}
|
200 |
+
.image-preview {border-radius: 10px; border: 1px solid #ddd;}
|
201 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
# Gradio UI
|
204 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as chat_ui:
|
205 |
+
with gr.Row():
|
206 |
+
with gr.Column(scale=3):
|
207 |
+
gr.Markdown("# ICliniq AI-Powered Medical Image Analysis")
|
208 |
+
gr.Markdown("""
|
209 |
+
This system analyzes medical images in .npy format and answers your questions.
|
210 |
+
|
211 |
+
## How to use:
|
212 |
+
1. Upload your medical image (.npy format)
|
213 |
+
2. Wait for the image to be processed
|
214 |
+
3. Ask questions about the image
|
215 |
+
""")
|
216 |
+
|
217 |
+
with gr.Row():
|
218 |
+
with gr.Column(scale=1):
|
219 |
+
uploaded_image = gr.File(
|
220 |
+
label="Upload Medical Image (.npy format)",
|
221 |
+
file_types=[".npy"],
|
222 |
+
type="file"
|
223 |
+
)
|
224 |
+
|
225 |
+
with gr.Column(scale=1):
|
226 |
+
upload_status = gr.Textbox(
|
227 |
+
label="Upload Status",
|
228 |
+
interactive=False
|
229 |
+
)
|
230 |
+
|
231 |
+
extracted_image = gr.Image(
|
232 |
+
label="Processed Image Preview",
|
233 |
+
elem_id="image-preview"
|
234 |
+
)
|
235 |
+
|
236 |
+
with gr.Column(scale=4):
|
237 |
+
chat_list = gr.Chatbot(
|
238 |
+
value=[],
|
239 |
+
label="Conversation",
|
240 |
+
elem_id="chat-history",
|
241 |
+
height=500
|
242 |
+
)
|
243 |
+
|
244 |
+
with gr.Row():
|
245 |
+
question_input = gr.Textbox(
|
246 |
+
label="Ask about the medical image",
|
247 |
+
placeholder="What abnormalities do you see in this scan?",
|
248 |
+
lines=2
|
249 |
+
)
|
250 |
+
|
251 |
+
with gr.Row():
|
252 |
+
clear_button = gr.Button("Clear Conversation", variant="secondary")
|
253 |
+
submit_button = gr.Button("Send Question", variant="primary")
|
254 |
+
|
255 |
+
gr.Markdown("### System Status")
|
256 |
+
system_status = gr.Textbox(
|
257 |
+
label="",
|
258 |
+
value=f"Model loaded: {model_name_or_path}\nDevice: {device}\nSession ID: {session_id}",
|
259 |
+
interactive=False
|
260 |
+
)
|
261 |
+
|
262 |
+
# Set up event handlers
|
263 |
+
uploaded_image.upload(
|
264 |
+
upload_image,
|
265 |
+
inputs=[uploaded_image],
|
266 |
+
outputs=[upload_status, extracted_image]
|
267 |
+
)
|
268 |
+
|
269 |
+
submit_button.click(
|
270 |
+
chat_interface,
|
271 |
+
inputs=[question_input],
|
272 |
+
outputs=[chat_list]
|
273 |
+
).then(
|
274 |
+
lambda: "", # Clear input after sending
|
275 |
+
outputs=question_input
|
276 |
+
)
|
277 |
+
|
278 |
+
question_input.submit(
|
279 |
+
chat_interface,
|
280 |
+
inputs=[question_input],
|
281 |
+
outputs=[chat_list]
|
282 |
+
).then(
|
283 |
+
lambda: "", # Clear input after sending
|
284 |
+
outputs=question_input
|
285 |
+
)
|
286 |
+
|
287 |
+
clear_button.click(
|
288 |
+
clear_conversation,
|
289 |
+
inputs=[],
|
290 |
+
outputs=[chat_list, system_status]
|
291 |
+
)
|
292 |
|
293 |
+
# Launch the interface
|
294 |
+
if __name__ == "__main__":
|
295 |
+
print("Starting ICliniq Medical Image Analysis System...")
|
296 |
+
chat_ui.launch(share=True)
|