Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,222 +1,101 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import numpy as np
|
| 3 |
-
import torch
|
| 4 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
-
import gradio as gr
|
| 6 |
-
import matplotlib.pyplot as plt
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
fig, axes = plt.subplots(4, 8, figsize=(12, 6))
|
| 36 |
-
for i, ax in enumerate(axes.flat):
|
| 37 |
-
ax.imshow(npy_data[i], cmap='gray')
|
| 38 |
-
ax.axis('off')
|
| 39 |
|
| 40 |
-
|
| 41 |
-
plt.savefig(
|
| 42 |
-
plt.close()
|
| 43 |
-
return
|
| 44 |
|
| 45 |
-
def upload_image(image):
|
| 46 |
-
global current_image
|
| 47 |
-
if image is None:
|
| 48 |
-
return "", None
|
| 49 |
-
current_image = image.name
|
| 50 |
-
preview_path = extract_and_display_images(current_image)
|
| 51 |
-
return "Image uploaded successfully!", preview_path
|
| 52 |
|
| 53 |
-
def
|
| 54 |
-
global current_image
|
| 55 |
-
if current_image is None:
|
| 56 |
-
return "Please upload an image first."
|
| 57 |
|
| 58 |
-
image_np = np.load(current_image)
|
| 59 |
-
image_tokens = "<im_patch>" *
|
| 60 |
-
input_txt = image_tokens + question
|
| 61 |
-
|
| 62 |
|
| 63 |
-
image_pt = torch.from_numpy(image_np).unsqueeze(0).to(dtype=
|
| 64 |
-
generation = model.generate(image_pt,
|
| 65 |
-
generated_texts = tokenizer.batch_decode(generation, skip_special_tokens=True)
|
| 66 |
-
return generated_texts[0]
|
| 67 |
-
|
| 68 |
-
def chat_with_model(user_message):
|
| 69 |
-
global chat_history
|
| 70 |
-
if not user_message.strip():
|
| 71 |
-
return chat_history
|
| 72 |
-
response = process_question(user_message)
|
| 73 |
-
chat_history.append((user_message, response))
|
| 74 |
-
return chat_history
|
| 75 |
-
|
| 76 |
-
# Function to export chat history to a text file
|
| 77 |
-
def export_chat_history():
|
| 78 |
-
history_text = ""
|
| 79 |
-
for user_msg, model_reply in chat_history:
|
| 80 |
-
history_text += f"User: {user_msg}\nAI: {model_reply}\n\n"
|
| 81 |
-
with open("chat_history.txt", "w") as f:
|
| 82 |
-
f.write(history_text)
|
| 83 |
-
return "Chat history exported as chat_history.txt"
|
| 84 |
-
|
| 85 |
-
# UI
|
| 86 |
-
with gr.Blocks(css="""
|
| 87 |
-
body {
|
| 88 |
-
background: #f5f5f5;
|
| 89 |
-
font-family: 'Inter', sans-serif;
|
| 90 |
-
color: #333333;
|
| 91 |
-
}
|
| 92 |
-
|
| 93 |
-
h1 {
|
| 94 |
-
text-align: center;
|
| 95 |
-
font-size: 2em;
|
| 96 |
-
margin-bottom: 20px;
|
| 97 |
-
color: #222;
|
| 98 |
-
}
|
| 99 |
-
|
| 100 |
-
.gr-box {
|
| 101 |
-
background: #ffffff;
|
| 102 |
-
padding: 20px;
|
| 103 |
-
border-radius: 10px;
|
| 104 |
-
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1);
|
| 105 |
-
}
|
| 106 |
-
|
| 107 |
-
.gr-chatbot-container {
|
| 108 |
-
overflow-y: auto;
|
| 109 |
-
max-height: 500px;
|
| 110 |
-
scroll-behavior: smooth;
|
| 111 |
-
}
|
| 112 |
-
|
| 113 |
-
.gr-chatbot-message {
|
| 114 |
-
margin-bottom: 10px;
|
| 115 |
-
padding: 8px;
|
| 116 |
-
border-radius: 8px;
|
| 117 |
-
background: #f5f5f5;
|
| 118 |
-
animation: fadeIn 0.5s ease-out;
|
| 119 |
-
}
|
| 120 |
-
|
| 121 |
-
.gr-button {
|
| 122 |
-
background-color: #4CAF50;
|
| 123 |
-
color: white;
|
| 124 |
-
border: none;
|
| 125 |
-
padding: 8px 16px;
|
| 126 |
-
border-radius: 6px;
|
| 127 |
-
cursor: pointer;
|
| 128 |
-
}
|
| 129 |
-
|
| 130 |
-
.gr-button:hover {
|
| 131 |
-
background-color: #45a049;
|
| 132 |
-
}
|
| 133 |
|
| 134 |
-
#message-box {
|
| 135 |
-
display: flex;
|
| 136 |
-
align-items: center;
|
| 137 |
-
position: relative;
|
| 138 |
-
transition: all 0.3s ease;
|
| 139 |
-
}
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
font-size: 14px;
|
| 147 |
-
margin-right: 40px; /* To give space for the icon */
|
| 148 |
-
}
|
| 149 |
|
| 150 |
-
#upload-icon {
|
| 151 |
-
position: absolute;
|
| 152 |
-
right: 10px;
|
| 153 |
-
cursor: pointer;
|
| 154 |
-
font-size: 24px;
|
| 155 |
-
color: #4CAF50;
|
| 156 |
-
animation: bounce 0.6s infinite alternate;
|
| 157 |
-
}
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
| 163 |
|
| 164 |
-
#
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
""") as app:
|
| 184 |
-
gr.Markdown("# AI Powered Medical Image Analysis System")
|
| 185 |
-
|
| 186 |
-
with gr.Row():
|
| 187 |
-
with gr.Column(scale=1):
|
| 188 |
-
chatbot_ui = gr.Chatbot(value=[], label="Chat History")
|
| 189 |
-
with gr.Column(scale=2):
|
| 190 |
-
# Message input area with the '+' icon inside it
|
| 191 |
-
with gr.Box(elem_id="message-box"):
|
| 192 |
-
message_input = gr.Textbox(placeholder="Type your question here...", label="Your Message", elem_id="message-input")
|
| 193 |
-
upload_button = gr.HTML('<span id="upload-icon">+</span>') # The + icon inside the message box
|
| 194 |
-
|
| 195 |
-
upload_section = gr.File(label="Upload NPY Image", type="filepath", visible=False)
|
| 196 |
-
upload_status = gr.Textbox(label="Status", interactive=False)
|
| 197 |
-
preview_img = gr.Image(label="Image Preview", interactive=False)
|
| 198 |
-
send_button = gr.Button("Send")
|
| 199 |
-
export_button = gr.Button("Export Chat History")
|
| 200 |
-
loading_spinner = gr.HTML('<div id="loading-spinner"><img src="https://i.imgur.com/llf5Jjs.gif" alt="Loading..."></div>')
|
| 201 |
-
|
| 202 |
-
# Handle click event for the '+' icon
|
| 203 |
-
upload_button.click(lambda: upload_section.update(visible=True), None, upload_section)
|
| 204 |
-
|
| 205 |
-
# Handle file upload
|
| 206 |
-
upload_section.upload(lambda *args: loading_spinner.update("<div id='loading-spinner'><img src='https://i.imgur.com/llf5Jjs.gif' alt='Loading...'></div>"), upload_section, None)
|
| 207 |
-
upload_section.upload(upload_image, upload_section, [upload_status, preview_img])
|
| 208 |
-
|
| 209 |
-
# Display loading spinner while processing question
|
| 210 |
-
send_button.click(lambda *args: loading_spinner.update("<div id='loading-spinner'><img src='https://i.imgur.com/llf5Jjs.gif' alt='Loading...'></div>"), None, None)
|
| 211 |
-
send_button.click(chat_with_model, message_input, chatbot_ui)
|
| 212 |
-
send_button.click(lambda *args: loading_spinner.update(''), None, None)
|
| 213 |
-
message_input.submit(chat_with_model, message_input, chatbot_ui)
|
| 214 |
-
|
| 215 |
-
# Export chat history functionality
|
| 216 |
-
export_button.click(export_chat_history)
|
| 217 |
-
|
| 218 |
-
# Auto-focus typing box and scroll to bottom after message sent
|
| 219 |
-
message_input.submit(lambda: gr.update(focus=True), None, message_input)
|
| 220 |
-
send_button.click(lambda: gr.update(focus=True), None, message_input)
|
| 221 |
|
| 222 |
-
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
|
| 8 |
+
# Model setup
|
| 9 |
+
device = torch.device('cpu') # Use 'cuda' if GPU is available
|
| 10 |
+
dtype = torch.float32
|
| 11 |
+
model_name_or_path = 'GoodBaiBai88/M3D-LaMed-Phi-3-4B'
|
| 12 |
+
proj_out_num = 256
|
| 13 |
+
|
| 14 |
+
# Load model and tokenizer
|
| 15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 16 |
+
model_name_or_path,
|
| 17 |
+
torch_dtype=torch.float32,
|
| 18 |
+
device_map='cpu',
|
| 19 |
+
trust_remote_code=True
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 23 |
+
model_name_or_path,
|
| 24 |
+
model_max_length=512,
|
| 25 |
+
padding_side="right",
|
| 26 |
+
use_fast=False,
|
| 27 |
+
trust_remote_code=True
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# Chat history storage
|
| 31 |
+
chat_history = []
|
| 32 |
+
current_image = None
|
| 33 |
+
|
| 34 |
+
def extract_and_display_images(image_path):
|
| 35 |
+
npy_data = np.load(image_path)
|
| 36 |
+
if npy_data.ndim == 4 and npy_data.shape[1] == 32:
|
| 37 |
+
npy_data = npy_data[0]
|
| 38 |
+
elif npy_data.ndim != 3 or npy_data.shape[0] != 32:
|
| 39 |
+
return "Invalid .npy file format. Expected shape (1, 32, 256, 256) or (32, 256, 256)."
|
| 40 |
|
| 41 |
+
fig, axes = plt.subplots(4, 8, figsize=(12, 6))
|
| 42 |
+
for i, ax in enumerate(axes.flat):
|
| 43 |
+
ax.imshow(npy_data[i], cmap='gray')
|
| 44 |
+
ax.axis('off')
|
| 45 |
|
| 46 |
+
image_output = "extracted_images.png"
|
| 47 |
+
plt.savefig(image_output, bbox_inches='tight')
|
| 48 |
+
plt.close()
|
| 49 |
+
return image_output
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
def process_image(question):
|
| 53 |
+
global current_image
|
| 54 |
+
if current_image is None:
|
| 55 |
+
return "Please upload an image first."
|
| 56 |
|
| 57 |
+
image_np = np.load(current_image)
|
| 58 |
+
image_tokens = "<im_patch>" * proj_out_num
|
| 59 |
+
input_txt = image_tokens + question
|
| 60 |
+
input_id = tokenizer(input_txt, return_tensors="pt")['input_ids'].to(device=device)
|
| 61 |
|
| 62 |
+
image_pt = torch.from_numpy(image_np).unsqueeze(0).to(dtype=dtype, device=device)
|
| 63 |
+
generation = model.generate(image_pt, input_id, max_new_tokens=256, do_sample=True, top_p=0.9, temperature=1.0)
|
| 64 |
+
generated_texts = tokenizer.batch_decode(generation, skip_special_tokens=True)
|
| 65 |
+
return generated_texts[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
def chat_interface(question):
|
| 69 |
+
global chat_history
|
| 70 |
+
response = process_image(question)
|
| 71 |
+
chat_history.append((question, response))
|
| 72 |
+
return chat_history
|
|
|
|
|
|
|
|
|
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
def upload_image(image):
|
| 76 |
+
global current_image
|
| 77 |
+
current_image = image.name
|
| 78 |
+
extracted_image_path = extract_and_display_images(current_image)
|
| 79 |
+
return "Image uploaded and processed successfully!", extracted_image_path
|
| 80 |
|
| 81 |
+
# Gradio UI
|
| 82 |
+
with gr.Blocks(theme=gr.themes.Soft()) as chat_ui:
|
| 83 |
+
gr.Markdown("## ICliniq AI-Powered Medical Image Analysis Workspace")
|
| 84 |
+
|
| 85 |
+
with gr.Row():
|
| 86 |
+
with gr.Column(scale=1):
|
| 87 |
+
chat_list = gr.Chatbot(value=[], label="Chat History", elem_id="chat-history")
|
| 88 |
+
|
| 89 |
+
with gr.Column(scale=2):
|
| 90 |
+
uploaded_image = gr.File(label="Upload .npy Image", type="filepath")
|
| 91 |
+
upload_status = gr.Textbox(label="Status", interactive=False)
|
| 92 |
+
extracted_image = gr.Image(label="Extracted Images", type="filepath")
|
| 93 |
+
question_input = gr.Textbox(label="Ask a question", placeholder="Ask something about the image...", lines=2)
|
| 94 |
+
submit_button = gr.Button("Send")
|
| 95 |
+
|
| 96 |
+
# Upload and Processing Interactions
|
| 97 |
+
uploaded_image.upload(upload_image, uploaded_image, [upload_status, extracted_image])
|
| 98 |
+
submit_button.click(chat_interface, question_input, chat_list)
|
| 99 |
+
question_input.submit(chat_interface, question_input, chat_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
+
chat_ui.launch()
|