Spaces:
Running
Running
import os | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
# Model setup | |
device = torch.device('cpu') # Use 'cuda' if GPU is available | |
dtype = torch.float32 | |
model_name_or_path = 'GoodBaiBai88/M3D-LaMed-Phi-3-4B' | |
proj_out_num = 256 | |
# Load model and tokenizer | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name_or_path, | |
torch_dtype=torch.float32, | |
device_map='cpu', | |
trust_remote_code=True | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_name_or_path, | |
model_max_length=512, | |
padding_side="right", | |
use_fast=False, | |
trust_remote_code=True | |
) | |
# Chat history storage | |
chat_history = [] | |
current_image = None | |
def extract_and_display_images(image_path): | |
npy_data = np.load(image_path) | |
if npy_data.ndim == 4 and npy_data.shape[1] == 32: | |
npy_data = npy_data[0] | |
elif npy_data.ndim != 3 or npy_data.shape[0] != 32: | |
return "Invalid .npy file format. Expected shape (1, 32, 256, 256) or (32, 256, 256)." | |
fig, axes = plt.subplots(4, 8, figsize=(12, 6)) | |
for i, ax in enumerate(axes.flat): | |
ax.imshow(npy_data[i], cmap='gray') | |
ax.axis('off') | |
image_output = "extracted_images.png" | |
plt.savefig(image_output, bbox_inches='tight') | |
plt.close() | |
return image_output | |
def process_image(question): | |
global current_image | |
if current_image is None: | |
return "Please upload an image first." | |
image_np = np.load(current_image) | |
image_tokens = "<im_patch>" * proj_out_num | |
input_txt = image_tokens + question | |
input_id = tokenizer(input_txt, return_tensors="pt")['input_ids'].to(device=device) | |
image_pt = torch.from_numpy(image_np).unsqueeze(0).to(dtype=dtype, device=device) | |
generation = model.generate(image_pt, input_id, max_new_tokens=256, do_sample=True, top_p=0.9, temperature=1.0) | |
generated_texts = tokenizer.batch_decode(generation, skip_special_tokens=True) | |
return generated_texts[0] | |
def chat_interface(question): | |
global chat_history | |
response = process_image(question) | |
chat_history.append((question, response)) | |
return chat_history | |
def upload_image(image): | |
global current_image | |
current_image = image.name | |
extracted_image_path = extract_and_display_images(current_image) | |
return "Image uploaded and processed successfully!", extracted_image_path | |
# Gradio UI | |
with gr.Blocks(theme=gr.themes.Soft()) as chat_ui: | |
gr.Markdown("ICliniq AI-Powered Medical Image Analysis Workspace") | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=200): | |
chat_list = gr.Chatbot(value=[], label="Chat History", elem_id="chat-history") | |
with gr.Column(scale=4): | |
uploaded_image = gr.File(label="Upload .npy Image", type="filepath") | |
upload_status = gr.Textbox(label="Status", interactive=False) | |
extracted_image = gr.Image(label="Extracted Images") | |
question_input = gr.Textbox(label="Ask a question", placeholder="Ask something about the image...") | |
submit_button = gr.Button("Send") | |
uploaded_image.upload(upload_image, uploaded_image, [upload_status, extracted_image]) | |
submit_button.click(chat_interface, question_input, chat_list) | |
question_input.submit(chat_interface, question_input, chat_list) | |
chat_ui.launch() |