ICLINIQ / app.py
Rohith1112's picture
commit
51a883e verified
raw
history blame
2.73 kB
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
# Model setup
device = torch.device('cpu') # Use 'cuda' if GPU is available
dtype = torch.float32 # Data type for model processing
model_name_or_path = 'GoodBaiBai88/M3D-LaMed-Phi-3-4B'
proj_out_num = 256
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
torch_dtype=torch.float32,
device_map='cpu',
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path,
model_max_length=512,
padding_side="right",
use_fast=False,
trust_remote_code=True
)
# Chat history storage
chat_history = []
current_image = None # To store the uploaded image
def process_image(question):
global current_image
if current_image is None:
return "Please upload an image first."
image_np = np.load(current_image) # Load the stored .npy image
image_tokens = "<im_patch>" * proj_out_num
input_txt = image_tokens + question
input_id = tokenizer(input_txt, return_tensors="pt")['input_ids'].to(device=device)
# Prepare image for model
image_pt = torch.from_numpy(image_np).unsqueeze(0).to(dtype=dtype, device=device)
# Generate response
generation = model.generate(image_pt, input_id, max_new_tokens=256, do_sample=True, top_p=0.9, temperature=1.0)
generated_texts = tokenizer.batch_decode(generation, skip_special_tokens=True)
return generated_texts[0]
# Function to update chat
def chat_interface(question):
global chat_history
response = process_image(question)
chat_history.append((question, response))
return chat_history
# Function to handle image upload
def upload_image(image):
global current_image
current_image = image.name
return "Image uploaded successfully!"
# Gradio UI
with gr.Blocks(theme=gr.themes.Soft()) as chat_ui:
gr.Markdown("# 🏥 Medical Image Analysis Chatbot")
with gr.Row():
with gr.Column(scale=1, min_width=200):
chat_list = gr.Chatbot(value=[], label="Chat History", elem_id="chat-history")
with gr.Column(scale=4):
uploaded_image = gr.File(label="Upload .npy Image", type="filepath")
upload_status = gr.Textbox(label="Status", interactive=False)
question_input = gr.Textbox(label="Ask a question", placeholder="Ask something about the image...")
submit_button = gr.Button("Send")
uploaded_image.upload(upload_image, uploaded_image, upload_status)
submit_button.click(chat_interface, question_input, chat_list)
question_input.submit(chat_interface, question_input, chat_list)
chat_ui.launch()