Rogerjs commited on
Commit
d864fc1
·
verified ·
1 Parent(s): d44c6d5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -16
app.py CHANGED
@@ -4,11 +4,12 @@ import os
4
  import time
5
  import torch
6
  from scipy.io import wavfile
 
7
  import datasets
8
 
9
  # Bark imports
10
  from bark import generate_audio, SAMPLE_RATE
11
- from bark.generation import preload_models
12
 
13
  # Hugging Face Transformers
14
  from transformers import (
@@ -24,6 +25,9 @@ class VoiceSynthesizer:
24
  self.working_dir = os.path.join(self.base_dir, "working_files")
25
  os.makedirs(self.working_dir, exist_ok=True)
26
 
 
 
 
27
  # Initialize models dictionary
28
  self.models = {
29
  "bark": self._initialize_bark,
@@ -41,6 +45,38 @@ class VoiceSynthesizer:
41
  except Exception as e:
42
  print(f"Bark model loading error: {e}")
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  def _initialize_bark(self):
45
  """Bark model initialization (already done in __init__)"""
46
  return None
@@ -67,12 +103,6 @@ class VoiceSynthesizer:
67
  print(f"SpeechT5 model loading error: {e}")
68
  return None
69
 
70
- def set_model(self, model_name):
71
- """Set the current model for speech synthesis"""
72
- if model_name not in self.models:
73
- raise ValueError(f"Model {model_name} not supported")
74
- self.current_model = model_name
75
-
76
  def generate_speech(self, text, model_name=None, voice_preset=None):
77
  """Generate speech using selected model"""
78
  if not text or not text.strip():
@@ -97,21 +127,34 @@ class VoiceSynthesizer:
97
 
98
  def _generate_bark_speech(self, text, voice_preset=None):
99
  """Generate speech using Bark"""
100
- # List of Bark voice presets
101
  voice_presets = [
102
  "v2/en_speaker_6", # Female
103
  "v2/en_speaker_3", # Male
104
  "v2/en_speaker_9", # Neutral
105
  ]
106
 
107
- # Select voice preset
108
- history_prompt = voice_preset if voice_preset else voice_presets[0]
109
 
110
- # Generate audio
111
- audio_array = generate_audio(
112
- text,
113
- history_prompt=history_prompt
114
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
115
 
116
  # Save generated audio
117
  filename = f"bark_speech_{int(time.time())}.wav"
@@ -159,7 +202,13 @@ def create_interface():
159
 
160
  with gr.Row():
161
  with gr.Column():
162
- gr.Markdown("## Speech Generation")
 
 
 
 
 
 
163
  text_input = gr.Textbox(label="Enter Text to Speak")
164
 
165
  # Model Selection
@@ -196,6 +245,13 @@ def create_interface():
196
  audio_output = gr.Audio(label="Generated Speech")
197
  error_output = gr.Textbox(label="Errors", visible=True)
198
 
 
 
 
 
 
 
 
199
  # Dynamic model and preset visibility
200
  def update_model_visibility(model):
201
  if "bark" in model.lower():
 
4
  import time
5
  import torch
6
  from scipy.io import wavfile
7
+ import soundfile as sf
8
  import datasets
9
 
10
  # Bark imports
11
  from bark import generate_audio, SAMPLE_RATE
12
+ from bark.generation import preload_models, generate_text_semantic
13
 
14
  # Hugging Face Transformers
15
  from transformers import (
 
25
  self.working_dir = os.path.join(self.base_dir, "working_files")
26
  os.makedirs(self.working_dir, exist_ok=True)
27
 
28
+ # Store reference voice
29
+ self.reference_voice = None
30
+
31
  # Initialize models dictionary
32
  self.models = {
33
  "bark": self._initialize_bark,
 
45
  except Exception as e:
46
  print(f"Bark model loading error: {e}")
47
 
48
+ def process_reference_audio(self, reference_audio):
49
+ """Process and store reference audio for voice cloning"""
50
+ try:
51
+ # Ensure audio is in the right format
52
+ if reference_audio is None:
53
+ return "No audio provided"
54
+
55
+ # Convert to numpy array if needed
56
+ if isinstance(reference_audio, tuple):
57
+ reference_audio = reference_audio[0]
58
+
59
+ # Ensure the audio is mono and normalized
60
+ if reference_audio.ndim > 1:
61
+ reference_audio = reference_audio.mean(axis=1)
62
+
63
+ # Resample or trim if necessary
64
+ if len(reference_audio) > SAMPLE_RATE * 10: # Limit to 10 seconds
65
+ reference_audio = reference_audio[:SAMPLE_RATE * 10]
66
+
67
+ # Save reference audio
68
+ ref_filename = os.path.join(self.working_dir, "reference_voice.wav")
69
+ sf.write(ref_filename, reference_audio, SAMPLE_RATE)
70
+
71
+ # Store reference voice
72
+ self.reference_voice = reference_audio
73
+
74
+ return "Reference voice processed successfully"
75
+
76
+ except Exception as e:
77
+ print(f"Reference audio processing error: {e}")
78
+ return f"Error processing reference audio: {str(e)}"
79
+
80
  def _initialize_bark(self):
81
  """Bark model initialization (already done in __init__)"""
82
  return None
 
103
  print(f"SpeechT5 model loading error: {e}")
104
  return None
105
 
 
 
 
 
 
 
106
  def generate_speech(self, text, model_name=None, voice_preset=None):
107
  """Generate speech using selected model"""
108
  if not text or not text.strip():
 
127
 
128
  def _generate_bark_speech(self, text, voice_preset=None):
129
  """Generate speech using Bark"""
130
+ # Default Bark voice presets
131
  voice_presets = [
132
  "v2/en_speaker_6", # Female
133
  "v2/en_speaker_3", # Male
134
  "v2/en_speaker_9", # Neutral
135
  ]
136
 
137
+ # Prepare history prompt
138
+ history_prompt = None
139
 
140
+ # Check if a reference voice is available
141
+ if self.reference_voice is not None:
142
+ # Save reference voice for Bark
143
+ ref_filename = os.path.join(self.working_dir, "reference_voice.wav")
144
+ history_prompt = ref_filename
145
+ elif voice_preset:
146
+ # Use predefined voice preset
147
+ history_prompt = voice_presets[0] if "v2/en_speaker" not in voice_preset else voice_preset
148
+
149
+ # Generate audio with or without history prompt
150
+ if history_prompt:
151
+ audio_array = generate_audio(
152
+ text,
153
+ history_prompt=history_prompt
154
+ )
155
+ else:
156
+ # Fallback to default generation
157
+ audio_array = generate_audio(text)
158
 
159
  # Save generated audio
160
  filename = f"bark_speech_{int(time.time())}.wav"
 
202
 
203
  with gr.Row():
204
  with gr.Column():
205
+ gr.Markdown("## 1. Capture Reference Voice")
206
+ reference_audio = gr.Audio(sources=["microphone", "upload"], type="numpy")
207
+ process_ref_btn = gr.Button("Process Reference Voice")
208
+ process_ref_output = gr.Textbox(label="Reference Voice Processing")
209
+
210
+ with gr.Column():
211
+ gr.Markdown("## 2. Generate Speech")
212
  text_input = gr.Textbox(label="Enter Text to Speak")
213
 
214
  # Model Selection
 
245
  audio_output = gr.Audio(label="Generated Speech")
246
  error_output = gr.Textbox(label="Errors", visible=True)
247
 
248
+ # Process reference audio
249
+ process_ref_btn.click(
250
+ fn=synthesizer.process_reference_audio,
251
+ inputs=reference_audio,
252
+ outputs=process_ref_output
253
+ )
254
+
255
  # Dynamic model and preset visibility
256
  def update_model_visibility(model):
257
  if "bark" in model.lower():