Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -45,212 +45,182 @@ class VoiceSynthesizer:
|
|
45 |
except Exception as e:
|
46 |
print(f"Bark model loading error: {e}")
|
47 |
|
48 |
-
def
|
49 |
-
|
50 |
-
|
51 |
-
# Gradio can pass audio in different formats
|
52 |
-
if reference_audio is None:
|
53 |
-
return "No audio provided"
|
54 |
-
|
55 |
-
# Handle different input types
|
56 |
-
if isinstance(reference_audio, tuple):
|
57 |
-
# Gradio typically returns (sample_rate, audio_array)
|
58 |
-
if len(reference_audio) == 2:
|
59 |
-
sample_rate, audio_data = reference_audio
|
60 |
-
else:
|
61 |
-
audio_data = reference_audio[0]
|
62 |
-
sample_rate = SAMPLE_RATE # Default to Bark sample rate
|
63 |
-
elif isinstance(reference_audio, np.ndarray):
|
64 |
-
audio_data = reference_audio
|
65 |
-
sample_rate = SAMPLE_RATE
|
66 |
-
else:
|
67 |
-
return "Invalid audio format"
|
68 |
-
|
69 |
-
# Ensure audio is numpy array
|
70 |
-
audio_data = np.asarray(audio_data)
|
71 |
-
|
72 |
-
# Handle multi-channel audio
|
73 |
-
if audio_data.ndim > 1:
|
74 |
-
audio_data = audio_data.mean(axis=1)
|
75 |
-
|
76 |
-
# Trim or pad to standard length
|
77 |
-
max_duration = 10 # 10 seconds
|
78 |
-
max_samples = max_duration * sample_rate
|
79 |
-
|
80 |
-
if len(audio_data) > max_samples:
|
81 |
-
audio_data = audio_data[:max_samples]
|
82 |
-
|
83 |
-
# Resample if necessary
|
84 |
-
if sample_rate != SAMPLE_RATE:
|
85 |
-
from scipy.signal import resample
|
86 |
-
audio_data = resample(audio_data, int(len(audio_data) * SAMPLE_RATE / sample_rate))
|
87 |
-
|
88 |
-
# Save reference audio
|
89 |
-
ref_filename = os.path.join(self.working_dir, "reference_voice.wav")
|
90 |
-
sf.write(ref_filename, audio_data, SAMPLE_RATE)
|
91 |
-
|
92 |
-
# Store reference voice
|
93 |
-
self.reference_voice = ref_filename
|
94 |
-
|
95 |
-
return "Reference voice processed successfully"
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
history_prompt = self.reference_voice
|
119 |
-
elif voice_preset:
|
120 |
-
# Use predefined voice preset
|
121 |
-
history_prompt = voice_presets[0] if "v2/en_speaker" not in voice_preset else voice_preset
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
traceback.print_exc()
|
145 |
-
return None, f"Error in Bark speech generation: {str(e)}"
|
146 |
-
def create_interface():
|
147 |
-
synthesizer = VoiceSynthesizer()
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
171 |
)
|
172 |
-
|
173 |
-
#
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
visible=True
|
183 |
-
)
|
184 |
-
|
185 |
-
speecht5_preset = gr.Dropdown(
|
186 |
-
choices=[
|
187 |
-
"Default Speaker"
|
188 |
-
],
|
189 |
-
label="SpeechT5 Speaker",
|
190 |
-
visible=False
|
191 |
-
)
|
192 |
-
|
193 |
-
generate_btn = gr.Button("Generate Speech")
|
194 |
-
audio_output = gr.Audio(label="Generated Speech")
|
195 |
-
error_output = gr.Textbox(label="Errors", visible=True)
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
speecht5_preset: gr.update(visible=False)
|
210 |
-
}
|
211 |
else:
|
212 |
-
|
213 |
-
bark_preset: gr.update(visible=False),
|
214 |
-
speecht5_preset: gr.update(visible=True)
|
215 |
-
}
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
)
|
222 |
|
223 |
-
#
|
224 |
-
|
225 |
-
# Map model name
|
226 |
-
model_map = {
|
227 |
-
"bark (Suno AI)": "bark",
|
228 |
-
"speecht5 (Microsoft)": "speecht5"
|
229 |
-
}
|
230 |
-
|
231 |
-
# Select appropriate preset
|
232 |
-
preset = bark_preset if "bark" in model else speecht5_preset
|
233 |
-
|
234 |
-
return synthesizer.generate_speech(
|
235 |
-
text,
|
236 |
-
model_name=model_map[model],
|
237 |
-
voice_preset=preset
|
238 |
-
)
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
return interface
|
247 |
|
248 |
-
|
249 |
-
interface = create_interface()
|
250 |
-
interface.launch(
|
251 |
-
share=False,
|
252 |
-
debug=True,
|
253 |
-
show_error=True,
|
254 |
-
server_name='0.0.0.0',
|
255 |
-
server_port=7860
|
256 |
-
)
|
|
|
45 |
except Exception as e:
|
46 |
print(f"Bark model loading error: {e}")
|
47 |
|
48 |
+
def _initialize_bark(self):
|
49 |
+
"""Bark model initialization (already done in __init__)"""
|
50 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
def _initialize_speecht5(self):
|
53 |
+
"""Initialize SpeechT5 model from Hugging Face"""
|
54 |
+
try:
|
55 |
+
# Load SpeechT5 model and processor
|
56 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
57 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
58 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
59 |
+
|
60 |
+
# Load speaker embeddings
|
61 |
+
embeddings_dataset = datasets.load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
62 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[0]["xvector"]).unsqueeze(0)
|
63 |
+
|
64 |
+
return {
|
65 |
+
"model": model,
|
66 |
+
"processor": processor,
|
67 |
+
"vocoder": vocoder,
|
68 |
+
"speaker_embeddings": speaker_embeddings
|
69 |
+
}
|
70 |
+
except Exception as e:
|
71 |
+
print(f"SpeechT5 model loading error: {e}")
|
72 |
+
return None
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
def process_reference_audio(self, reference_audio):
|
75 |
+
"""Process and store reference audio for voice cloning"""
|
76 |
+
try:
|
77 |
+
# Gradio can pass audio in different formats
|
78 |
+
if reference_audio is None:
|
79 |
+
return "No audio provided"
|
80 |
+
|
81 |
+
# Handle different input types
|
82 |
+
if isinstance(reference_audio, tuple):
|
83 |
+
# Gradio typically returns (sample_rate, audio_array)
|
84 |
+
if len(reference_audio) == 2:
|
85 |
+
sample_rate, audio_data = reference_audio
|
86 |
+
else:
|
87 |
+
audio_data = reference_audio[0]
|
88 |
+
sample_rate = SAMPLE_RATE # Default to Bark sample rate
|
89 |
+
elif isinstance(reference_audio, np.ndarray):
|
90 |
+
audio_data = reference_audio
|
91 |
+
sample_rate = SAMPLE_RATE
|
92 |
+
else:
|
93 |
+
return "Invalid audio format"
|
94 |
+
|
95 |
+
# Ensure audio is numpy array
|
96 |
+
audio_data = np.asarray(audio_data)
|
97 |
+
|
98 |
+
# Handle multi-channel audio
|
99 |
+
if audio_data.ndim > 1:
|
100 |
+
audio_data = audio_data.mean(axis=1)
|
101 |
+
|
102 |
+
# Trim or pad to standard length
|
103 |
+
max_duration = 10 # 10 seconds
|
104 |
+
max_samples = max_duration * sample_rate
|
105 |
+
|
106 |
+
if len(audio_data) > max_samples:
|
107 |
+
audio_data = audio_data[:max_samples]
|
108 |
+
|
109 |
+
# Resample if necessary
|
110 |
+
if sample_rate != SAMPLE_RATE:
|
111 |
+
from scipy.signal import resample
|
112 |
+
audio_data = resample(audio_data, int(len(audio_data) * SAMPLE_RATE / sample_rate))
|
113 |
+
|
114 |
+
# Save reference audio
|
115 |
+
ref_filename = os.path.join(self.working_dir, "reference_voice.wav")
|
116 |
+
sf.write(ref_filename, audio_data, SAMPLE_RATE)
|
117 |
+
|
118 |
+
# Store reference voice
|
119 |
+
self.reference_voice = ref_filename
|
120 |
+
|
121 |
+
return "Reference voice processed successfully"
|
122 |
|
123 |
+
except Exception as e:
|
124 |
+
print(f"Reference audio processing error: {e}")
|
125 |
+
import traceback
|
126 |
+
traceback.print_exc()
|
127 |
+
return f"Error processing reference audio: {str(e)}"
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
def _generate_bark_speech(self, text, voice_preset=None):
|
130 |
+
"""Generate speech using Bark"""
|
131 |
+
# Default Bark voice presets
|
132 |
+
voice_presets = [
|
133 |
+
"v2/en_speaker_6", # Female
|
134 |
+
"v2/en_speaker_3", # Male
|
135 |
+
"v2/en_speaker_9", # Neutral
|
136 |
+
]
|
137 |
+
|
138 |
+
# Prepare history prompt
|
139 |
+
history_prompt = None
|
140 |
+
|
141 |
+
# Check if a reference voice is available
|
142 |
+
if self.reference_voice is not None:
|
143 |
+
# Use saved reference voice file
|
144 |
+
history_prompt = self.reference_voice
|
145 |
+
elif voice_preset:
|
146 |
+
# Use predefined voice preset
|
147 |
+
history_prompt = voice_presets[0] if "v2/en_speaker" not in voice_preset else voice_preset
|
148 |
+
|
149 |
+
# Generate audio with or without history prompt
|
150 |
+
try:
|
151 |
+
if history_prompt:
|
152 |
+
audio_array = generate_audio(
|
153 |
+
text,
|
154 |
+
history_prompt=history_prompt
|
155 |
)
|
156 |
+
else:
|
157 |
+
# Fallback to default generation
|
158 |
+
audio_array = generate_audio(text)
|
159 |
+
|
160 |
+
# Save generated audio
|
161 |
+
filename = f"bark_speech_{int(time.time())}.wav"
|
162 |
+
filepath = os.path.join(self.working_dir, filename)
|
163 |
+
wavfile.write(filepath, SAMPLE_RATE, audio_array)
|
164 |
+
|
165 |
+
return filepath, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
+
except Exception as e:
|
168 |
+
print(f"Bark speech generation error: {e}")
|
169 |
+
import traceback
|
170 |
+
traceback.print_exc()
|
171 |
+
return None, f"Error in Bark speech generation: {str(e)}"
|
172 |
+
|
173 |
+
def generate_speech(self, text, model_name=None, voice_preset=None):
|
174 |
+
"""Generate speech using selected model"""
|
175 |
+
if not text or not text.strip():
|
176 |
+
return None, "Please enter some text to speak"
|
177 |
+
|
178 |
+
# Use specified model or current model
|
179 |
+
current_model = model_name or self.current_model
|
180 |
|
181 |
+
try:
|
182 |
+
if current_model == "bark":
|
183 |
+
return self._generate_bark_speech(text, voice_preset)
|
184 |
+
elif current_model == "speecht5":
|
185 |
+
return self._generate_speecht5_speech(text, voice_preset)
|
|
|
|
|
186 |
else:
|
187 |
+
raise ValueError(f"Unsupported model: {current_model}")
|
|
|
|
|
|
|
188 |
|
189 |
+
except Exception as e:
|
190 |
+
print(f"Speech generation error: {e}")
|
191 |
+
import traceback
|
192 |
+
traceback.print_exc()
|
193 |
+
return None, f"Error generating speech: {str(e)}"
|
194 |
+
|
195 |
+
def _generate_speecht5_speech(self, text, speaker_id=None):
|
196 |
+
"""Generate speech using SpeechT5"""
|
197 |
+
# Ensure model is initialized
|
198 |
+
speecht5_models = self.models["speecht5"]()
|
199 |
+
if not speecht5_models:
|
200 |
+
return None, "SpeechT5 model not loaded"
|
201 |
+
|
202 |
+
model = speecht5_models["model"]
|
203 |
+
processor = speecht5_models["processor"]
|
204 |
+
vocoder = speecht5_models["vocoder"]
|
205 |
+
speaker_embeddings = speecht5_models["speaker_embeddings"]
|
206 |
+
|
207 |
+
# Prepare inputs
|
208 |
+
inputs = processor(text=text, return_tensors="pt")
|
209 |
+
|
210 |
+
# Generate speech
|
211 |
+
speech = model.generate_speech(
|
212 |
+
inputs["input_ids"],
|
213 |
+
speaker_embeddings
|
214 |
)
|
215 |
|
216 |
+
# Convert to numpy array
|
217 |
+
audio_array = speech.numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
+
# Save generated audio
|
220 |
+
filename = f"speecht5_speech_{int(time.time())}.wav"
|
221 |
+
filepath = os.path.join(self.working_dir, filename)
|
222 |
+
wavfile.write(filepath, 16000, audio_array)
|
223 |
+
|
224 |
+
return filepath, None
|
|
|
225 |
|
226 |
+
# Rest of the code remains the same...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|