Voicecloner / app.py
Rogerjs's picture
Update app.py
ee87e83 verified
raw
history blame
13.1 kB
import gradio as gr
import numpy as np
import os
import time
import torch
from scipy.io import wavfile
import soundfile as sf
import datasets
# Bark imports
from bark import generate_audio, SAMPLE_RATE
from bark.generation import preload_models, generate_text_semantic
# Hugging Face Transformers
from transformers import (
SpeechT5HifiGan,
SpeechT5ForTextToSpeech,
SpeechT5Processor
)
class VoiceSynthesizer:
def __init__(self):
# Create working directory
self.base_dir = os.path.dirname(os.path.abspath(__file__))
self.working_dir = os.path.join(self.base_dir, "working_files")
os.makedirs(self.working_dir, exist_ok=True)
# Store reference voice
self.reference_voice = None
# Initialize models dictionary
self.models = {
"bark": self._initialize_bark,
"speecht5": self._initialize_speecht5
}
# Default model
self.current_model = "bark"
# Initialize Bark models
try:
print("Attempting to load Bark models...")
preload_models()
print("Bark models loaded successfully.")
except Exception as e:
print(f"Bark model loading error: {e}")
def _initialize_bark(self):
"""Bark model initialization (already done in __init__)"""
return None
def _initialize_speecht5(self):
"""Initialize SpeechT5 model from Hugging Face"""
try:
# Load SpeechT5 model and processor
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
# Load speaker embeddings
embeddings_dataset = datasets.load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[0]["xvector"]).unsqueeze(0)
return {
"model": model,
"processor": processor,
"vocoder": vocoder,
"speaker_embeddings": speaker_embeddings
}
except Exception as e:
print(f"SpeechT5 model loading error: {e}")
return None
def process_reference_audio(self, reference_audio):
"""Process and store reference audio for voice cloning"""
try:
# Gradio can pass audio in different formats
if reference_audio is None:
return "No audio provided"
# Handle different input types
if isinstance(reference_audio, tuple):
# Gradio typically returns (sample_rate, audio_array)
if len(reference_audio) == 2:
sample_rate, audio_data = reference_audio
else:
audio_data = reference_audio[0]
sample_rate = SAMPLE_RATE # Default to Bark sample rate
elif isinstance(reference_audio, np.ndarray):
audio_data = reference_audio
sample_rate = SAMPLE_RATE
else:
return "Invalid audio format"
# Ensure audio is numpy array
audio_data = np.asarray(audio_data)
# Handle multi-channel audio
if audio_data.ndim > 1:
audio_data = audio_data.mean(axis=1)
# Trim or pad to standard length
max_duration = 10 # 10 seconds
max_samples = max_duration * sample_rate
if len(audio_data) > max_samples:
audio_data = audio_data[:max_samples]
# Resample if necessary
if sample_rate != SAMPLE_RATE:
from scipy.signal import resample
audio_data = resample(audio_data, int(len(audio_data) * SAMPLE_RATE / sample_rate))
# Save reference audio
ref_filename = os.path.join(self.working_dir, "reference_voice.wav")
sf.write(ref_filename, audio_data, SAMPLE_RATE)
# Store reference voice
self.reference_voice = ref_filename
return "Reference voice processed successfully"
except Exception as e:
print(f"Reference audio processing error: {e}")
import traceback
traceback.print_exc()
return f"Error processing reference audio: {str(e)}"
def _generate_bark_speech(self, text, voice_preset=None):
"""Generate speech using Bark"""
# Default Bark voice presets
voice_presets = [
"v2/en_speaker_6", # Female
"v2/en_speaker_3", # Male
"v2/en_speaker_9", # Neutral
]
# Prepare history prompt
history_prompt = None
# Check if a reference voice is available
if self.reference_voice is not None:
# Use saved reference voice file
history_prompt = self.reference_voice
# If no reference voice, use preset
if history_prompt is None and voice_preset:
# Extract the actual preset value
if isinstance(voice_preset, str):
# Remove any additional text in parentheses
preset_value = voice_preset.split(' ')[0]
history_prompt = preset_value if preset_value in voice_presets else voice_presets[0]
else:
history_prompt = voice_presets[0]
# Generate audio with or without history prompt
try:
# Attempt generation with different approaches
if history_prompt:
try:
audio_array = generate_audio(
text,
history_prompt=history_prompt
)
except Exception as preset_error:
print(f"Error with specific history prompt: {preset_error}")
# Fallback to default generation
audio_array = generate_audio(text)
else:
# Fallback to default generation
audio_array = generate_audio(text)
# Save generated audio
filename = f"bark_speech_{int(time.time())}.wav"
filepath = os.path.join(self.working_dir, filename)
wavfile.write(filepath, SAMPLE_RATE, audio_array)
return filepath, None
except Exception as e:
print(f"Bark speech generation error: {e}")
import traceback
traceback.print_exc()
return None, f"Error in Bark speech generation: {str(e)}"
def generate_speech(self, text, model_name=None, voice_preset=None):
"""Generate speech using selected model"""
if not text or not text.strip():
return None, "Please enter some text to speak"
# Use specified model or current model
current_model = model_name or self.current_model
try:
if current_model == "bark":
return self._generate_bark_speech(text, voice_preset)
elif current_model == "speecht5":
return self._generate_speecht5_speech(text, voice_preset)
else:
raise ValueError(f"Unsupported model: {current_model}")
except Exception as e:
print(f"Speech generation error: {e}")
import traceback
traceback.print_exc()
return None, f"Error generating speech: {str(e)}"
def _generate_speecht5_speech(self, text, speaker_id=None):
"""Generate speech using SpeechT5"""
# Ensure model is initialized
speecht5_models = self.models["speecht5"]()
if not speecht5_models:
return None, "SpeechT5 model not loaded"
model = speecht5_models["model"]
processor = speecht5_models["processor"]
vocoder = speecht5_models["vocoder"]
speaker_embeddings = speecht5_models["speaker_embeddings"]
# Prepare inputs
inputs = processor(text=text, return_tensors="pt")
# Generate speech
speech = model.generate_speech(
inputs["input_ids"],
speaker_embeddings
)
# Convert to numpy array
audio_array = speech.numpy()
# Save generated audio
filename = f"speecht5_speech_{int(time.time())}.wav"
filepath = os.path.join(self.working_dir, filename)
wavfile.write(filepath, 16000, audio_array)
return filepath, None
def create_interface():
synthesizer = VoiceSynthesizer()
with gr.Blocks() as interface:
gr.Markdown("# ๐ŸŽ™๏ธ Advanced Voice Synthesis")
with gr.Row():
with gr.Column():
gr.Markdown("## 1. Capture Reference Voice")
reference_audio = gr.Audio(sources=["microphone", "upload"], type="numpy")
process_ref_btn = gr.Button("Process Reference Voice")
process_ref_output = gr.Textbox(label="Reference Voice Processing")
with gr.Column():
gr.Markdown("## 2. Generate Speech")
text_input = gr.Textbox(label="Enter Text to Speak")
# Model Selection
model_dropdown = gr.Dropdown(
choices=[
"bark (Suno AI)",
"speecht5 (Microsoft)"
],
label="Select TTS Model",
value="bark (Suno AI)"
)
# Voice Preset Dropdowns
with gr.Row():
bark_preset = gr.Dropdown(
choices=[
"v2/en_speaker_6 (Female Voice)",
"v2/en_speaker_3 (Male Voice)",
"v2/en_speaker_9 (Neutral Voice)"
],
label="Bark Voice Preset",
value="v2/en_speaker_6 (Female Voice)",
visible=True
)
speecht5_preset = gr.Dropdown(
choices=[
"Default Speaker"
],
label="SpeechT5 Speaker",
visible=False
)
generate_btn = gr.Button("Generate Speech")
audio_output = gr.Audio(label="Generated Speech")
error_output = gr.Textbox(label="Errors", visible=True)
# Process reference audio
process_ref_btn.click(
fn=synthesizer.process_reference_audio,
inputs=reference_audio,
outputs=process_ref_output
)
# Dynamic model and preset visibility
def update_model_visibility(model):
if "bark" in model.lower():
return {
bark_preset: gr.update(visible=True),
speecht5_preset: gr.update(visible=False)
}
else:
return {
bark_preset: gr.update(visible=False),
speecht5_preset: gr.update(visible=True)
}
model_dropdown.change(
fn=update_model_visibility,
inputs=model_dropdown,
outputs=[bark_preset, speecht5_preset]
)
# Speech generation logic
def generate_speech_wrapper(text, model, bark_preset, speecht5_preset):
# Map model name
model_map = {
"bark (Suno AI)": "bark",
"speecht5 (Microsoft)": "speecht5"
}
# Select appropriate preset
preset = bark_preset if "bark" in model else speecht5_preset
# Extract preset value if it's a string with additional info
if isinstance(preset, str):
preset = preset.split(' ')[0]
return synthesizer.generate_speech(
text,
model_name=model_map[model],
voice_preset=preset
)
generate_btn.click(
fn=generate_speech_wrapper,
inputs=[text_input, model_dropdown, bark_preset, speecht5_preset],
outputs=[audio_output, error_output]
)
return interface
if __name__ == "__main__":
interface = create_interface()
interface.launch(
share=False,
debug=True,
show_error=True,
server_name='0.0.0.0',
server_port=7860
)