Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,58 @@
|
|
1 |
import gradio as gr
|
2 |
import mne
|
|
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
|
6 |
-
# Load open-source LLM
|
7 |
model_name = "tiiuae/falcon-7b-instruct"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def process_eeg(file):
|
12 |
# Load EEG data using MNE
|
|
|
13 |
raw = mne.io.read_raw_fif(file.name, preload=True)
|
14 |
-
|
|
|
15 |
psd, freqs = mne.time_frequency.psd_welch(raw, fmin=1, fmax=40)
|
|
|
|
|
16 |
alpha_power = compute_band_power(psd, freqs, 8, 12)
|
17 |
beta_power = compute_band_power(psd, freqs, 13, 30)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
28 |
-
outputs = model.generate(
|
|
|
|
|
29 |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
30 |
-
|
31 |
return summary
|
32 |
|
33 |
iface = gr.Interface(
|
@@ -35,7 +60,7 @@ iface = gr.Interface(
|
|
35 |
inputs=gr.File(label="Upload your EEG data (FIF format)"),
|
36 |
outputs="text",
|
37 |
title="NeuroNarrative-Lite: EEG Summary",
|
38 |
-
description="Upload EEG data to receive a text-based summary from an open-source
|
39 |
)
|
40 |
|
41 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
import mne
|
3 |
+
import numpy as np
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import torch
|
6 |
|
7 |
+
# Load an open-source LLM model with no additional training
|
8 |
model_name = "tiiuae/falcon-7b-instruct"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
model_name,
|
12 |
+
trust_remote_code=True,
|
13 |
+
torch_dtype=torch.float16,
|
14 |
+
device_map="auto" # Automatically selects CPU/GPU if available
|
15 |
+
)
|
16 |
+
|
17 |
+
def compute_band_power(psd, freqs, fmin, fmax):
|
18 |
+
"""Compute mean band power in the given frequency range."""
|
19 |
+
freq_mask = (freqs >= fmin) & (freqs <= fmax)
|
20 |
+
# Take the mean across channels and frequencies
|
21 |
+
band_psd = psd[:, freq_mask].mean()
|
22 |
+
return float(band_psd)
|
23 |
|
24 |
def process_eeg(file):
|
25 |
# Load EEG data using MNE
|
26 |
+
# This expects a .fif file containing raw EEG data
|
27 |
raw = mne.io.read_raw_fif(file.name, preload=True)
|
28 |
+
|
29 |
+
# Compute PSD (Power Spectral Density) between 1 and 40 Hz
|
30 |
psd, freqs = mne.time_frequency.psd_welch(raw, fmin=1, fmax=40)
|
31 |
+
|
32 |
+
# Compute simple band powers
|
33 |
alpha_power = compute_band_power(psd, freqs, 8, 12)
|
34 |
beta_power = compute_band_power(psd, freqs, 13, 30)
|
35 |
+
|
36 |
+
# Create a short summary of the extracted features
|
37 |
+
data_summary = (
|
38 |
+
f"Alpha power: {alpha_power:.3f}, Beta power: {beta_power:.3f}. "
|
39 |
+
f"The EEG shows stable alpha rhythms and slightly elevated beta activity."
|
40 |
+
)
|
41 |
+
|
42 |
+
# Prepare the prompt for the language model
|
43 |
+
prompt = f"""You are a neuroscientist analyzing EEG features.
|
44 |
+
Data Summary: {data_summary}
|
45 |
+
|
46 |
+
Provide a concise, user-friendly interpretation of these findings in simple terms.
|
47 |
+
"""
|
48 |
+
|
49 |
+
# Generate the summary using the LLM
|
50 |
inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
51 |
+
outputs = model.generate(
|
52 |
+
inputs, max_length=200, do_sample=True, top_k=50, top_p=0.95
|
53 |
+
)
|
54 |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
55 |
+
|
56 |
return summary
|
57 |
|
58 |
iface = gr.Interface(
|
|
|
60 |
inputs=gr.File(label="Upload your EEG data (FIF format)"),
|
61 |
outputs="text",
|
62 |
title="NeuroNarrative-Lite: EEG Summary",
|
63 |
+
description="Upload EEG data to receive a text-based summary from an open-source language model. No training required!"
|
64 |
)
|
65 |
|
66 |
if __name__ == "__main__":
|