Spaces:
Sleeping
Sleeping
import joblib | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import streamlit as st | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.decomposition import PCA | |
from scipy.cluster.hierarchy import fcluster | |
# ================== 加載保存的模型 ================== | |
scaler = joblib.load('scaler.sav') # 標準化模型 | |
pca = joblib.load('pca_model.sav') # PCA 模型 | |
kmeans = joblib.load('kmeans_model.sav') # K-means 模型 | |
linked = joblib.load('hierarchical_model.sav') # 階層式聚類模型 | |
dbscan = joblib.load('dbscan_model.sav') # DBSCAN 模型 | |
# 定義繪圖函數 | |
def plot_clusters(data, labels, title): | |
plt.figure(figsize=(8, 6)) | |
plt.scatter(data['PC1'], data['PC2'], c=labels, cmap='viridis', s=50) | |
plt.title(title) | |
plt.xlabel('Principal Component 1 (PC1)') | |
plt.ylabel('Principal Component 2 (PC2)') | |
plt.colorbar() | |
plt.savefig('plot.png') | |
plt.close() | |
return 'plot.png' | |
# 處理上傳的資料 | |
def process_data(file): | |
# 讀取新資料 | |
new_data = pd.read_csv(file) | |
# 移除 'Time' 欄位 | |
new_numerical_data = new_data.drop(columns=['Time']) | |
# 數據預處理 | |
scaled_new_data = scaler.transform(new_numerical_data) # 標準化數據 | |
pca_new_data = pca.transform(scaled_new_data) # 使用已保存的 PCA 模型進行轉換 | |
# 創建包含主成分的 DataFrame | |
pca_new_df = pd.DataFrame(pca_new_data, columns=['PC1', 'PC2']) | |
# 使用加載的模型進行聚類 | |
kmeans_new_labels = kmeans.predict(pca_new_df) | |
hclust_new_labels = fcluster(linked, 3, criterion='maxclust') | |
dbscan_new_labels = dbscan.fit_predict(pca_new_df) | |
# 可視化結果 | |
kmeans_plot = plot_clusters(pca_new_df, kmeans_new_labels, 'K-means Clustering') | |
hclust_plot = plot_clusters(pca_new_df, hclust_new_labels, 'Hierarchical Clustering') | |
dbscan_plot = plot_clusters(pca_new_df, dbscan_new_labels, 'DBSCAN Clustering') | |
return kmeans_new_labels, hclust_new_labels, dbscan_new_labels, kmeans_plot, hclust_plot, dbscan_plot | |
# Streamlit 應用程式 | |
st.title("聚類模型應用") | |
# 文件上傳 | |
uploaded_file = st.file_uploader("上傳 CSV 檔案", type=["csv"]) | |
if uploaded_file is not None: | |
kmeans_labels, hclust_labels, dbscan_labels, kmeans_plot, hclust_plot, dbscan_plot = process_data(uploaded_file) | |
# 顯示 K-means 標籤 | |
st.subheader("K-means Labels") | |
st.text(kmeans_labels) | |
# 顯示 Hierarchical 標籤 | |
st.subheader("Hierarchical Clustering Labels") | |
st.text(hclust_labels) | |
# 顯示 DBSCAN 標籤 | |
st.subheader("DBSCAN Labels") | |
st.text(dbscan_labels) | |
# 顯示圖像 | |
st.subheader("K-means Clustering Plot") | |
st.image(kmeans_plot) | |
st.subheader("Hierarchical Clustering Plot") | |
st.image(hclust_plot) | |
st.subheader("DBSCAN Clustering Plot") | |
st.image(dbscan_plot) | |