Roberta2024 commited on
Commit
605e3c4
·
verified ·
1 Parent(s): 70db863

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -0
app.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import matplotlib.pyplot as plt
4
+ import seaborn as sns
5
+ from sklearn.ensemble import RandomForestClassifier
6
+ from xgboost import XGBClassifier
7
+ from sklearn.tree import DecisionTreeClassifier
8
+ from sklearn.model_selection import train_test_split
9
+ import numpy as np
10
+
11
+ # Function to process data and return feature importances
12
+ def calculate_importances(file):
13
+ # Read uploaded file
14
+ heart_df = pd.read_csv(file)
15
+
16
+ # Set X and y
17
+ X = heart_df.drop('target', axis=1)
18
+ y = heart_df['target']
19
+
20
+ # Split the data
21
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
22
+
23
+ # Initialize models
24
+ rf_model = RandomForestClassifier(random_state=42)
25
+ xgb_model = XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42)
26
+ cart_model = DecisionTreeClassifier(random_state=42)
27
+
28
+ # Train models
29
+ rf_model.fit(X_train, y_train)
30
+ xgb_model.fit(X_train, y_train)
31
+ cart_model.fit(X_train, y_train)
32
+
33
+ # Get feature importances
34
+ rf_importances = rf_model.feature_importances_
35
+ xgb_importances = xgb_model.feature_importances_
36
+ cart_importances = cart_model.feature_importances_
37
+
38
+ feature_names = X.columns
39
+
40
+ # Prepare DataFrame
41
+ rf_importance = {'Feature': feature_names, 'Random Forest': rf_importances}
42
+ xgb_importance = {'Feature': feature_names, 'XGBoost': xgb_importances}
43
+ cart_importance = {'Feature': feature_names, 'CART': cart_importances}
44
+
45
+ # Create DataFrames
46
+ rf_df = pd.DataFrame(rf_importance)
47
+ xgb_df = pd.DataFrame(xgb_importance)
48
+ cart_df = pd.DataFrame(cart_importance)
49
+
50
+ # Merge DataFrames
51
+ importance_df = rf_df.merge(xgb_df, on='Feature').merge(cart_df, on='Feature')
52
+
53
+ # Save to Excel
54
+ file_name = 'feature_importances.xlsx'
55
+ importance_df.to_excel(file_name, index=False)
56
+
57
+ return file_name, importance_df.head()
58
+
59
+ # Streamlit interface
60
+ st.title("Feature Importance Calculation")
61
+
62
+ # File upload
63
+ uploaded_file = st.file_uploader("Upload heart.csv file", type=['csv'])
64
+
65
+ if uploaded_file is not None:
66
+ # Process the file and get results
67
+ excel_file, preview_df = calculate_importances(uploaded_file)
68
+
69
+ # Display a preview of the DataFrame
70
+ st.write("Feature Importances (Preview):")
71
+ st.dataframe(preview_df)
72
+
73
+ # Provide a link to download the Excel file
74
+ with open(excel_file, "rb") as file:
75
+ btn = st.download_button(
76
+ label="Download Excel File",
77
+ data=file,
78
+ file_name=excel_file,
79
+ mime="application/vnd.ms-excel"
80
+ )