Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,30 @@
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import folium
|
| 3 |
-
from folium.plugins import MarkerCluster
|
| 4 |
import plotly.graph_objects as go
|
| 5 |
-
import plotly.express as px
|
| 6 |
from geopy.geocoders import Nominatim
|
| 7 |
-
from geopy.exc import GeocoderInsufficientPrivileges
|
| 8 |
import re
|
| 9 |
import streamlit as st
|
| 10 |
-
import time
|
| 11 |
|
| 12 |
# Streamlit title and description
|
| 13 |
-
st.title("
|
| 14 |
-
st.write("
|
| 15 |
|
| 16 |
# Read data from Google Sheets
|
| 17 |
sheet_id = "1xUfnD1WCF5ldqECI8YXIko1gCpaDDCwTztL17kjI42U"
|
| 18 |
-
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
| 24 |
|
| 25 |
# Initialize Nominatim geocoder
|
| 26 |
-
geolocator = Nominatim(user_agent="
|
| 27 |
|
| 28 |
# Function to extract region (區域) from the address using regex
|
| 29 |
def extract_region(address):
|
|
@@ -33,61 +34,108 @@ def extract_region(address):
|
|
| 33 |
else:
|
| 34 |
return "Unknown"
|
| 35 |
|
| 36 |
-
# Function to
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
))
|
| 76 |
|
| 77 |
-
|
| 78 |
-
title="
|
| 79 |
title_x=0.5,
|
| 80 |
title_font=dict(size=24, family="Arial"),
|
| 81 |
height=600,
|
| 82 |
-
margin=dict(t=50, b=50, l=
|
| 83 |
)
|
| 84 |
-
|
| 85 |
-
st.
|
| 86 |
-
st.plotly_chart(sunburst, use_container_width=True)
|
| 87 |
|
| 88 |
# Plot bar chart with custom colors and labels
|
| 89 |
bar_chart = go.Figure(go.Bar(
|
| 90 |
-
x=region_group[
|
| 91 |
y=region_group["Count"],
|
| 92 |
text=region_group["Count"],
|
| 93 |
textposition='auto',
|
|
@@ -95,61 +143,33 @@ if region_column:
|
|
| 95 |
))
|
| 96 |
|
| 97 |
bar_chart.update_layout(
|
| 98 |
-
title="
|
| 99 |
title_x=0.5,
|
| 100 |
title_font=dict(size=24, family="Arial"),
|
| 101 |
height=400,
|
| 102 |
margin=dict(t=50, b=50, l=50, r=50),
|
| 103 |
-
xaxis_title="
|
| 104 |
-
yaxis_title="
|
| 105 |
xaxis=dict(tickangle=-45)
|
| 106 |
)
|
| 107 |
-
st.subheader("
|
| 108 |
st.plotly_chart(bar_chart)
|
| 109 |
|
| 110 |
-
# Display a map using Folium
|
| 111 |
-
|
| 112 |
-
st.subheader("餐廳位置地圖(含數量熱力圖)")
|
| 113 |
|
| 114 |
-
# Create map centered around
|
| 115 |
-
|
| 116 |
-
center_lon = df['經度'].mean()
|
| 117 |
-
m = folium.Map(location=[center_lat, center_lon], zoom_start=12)
|
| 118 |
|
| 119 |
# Add marker cluster to the map
|
| 120 |
marker_cluster = MarkerCluster().add_to(m)
|
| 121 |
-
|
| 122 |
-
# Prepare data for heatmap
|
| 123 |
-
heat_data = []
|
| 124 |
-
|
| 125 |
for index, row in df.iterrows():
|
| 126 |
-
if pd.notnull(row["
|
| 127 |
folium.Marker(
|
| 128 |
-
location=[row["
|
| 129 |
-
popup=f"{row
|
| 130 |
-
tooltip=row
|
| 131 |
).add_to(marker_cluster)
|
| 132 |
-
heat_data.append([row["緯度"], row["經度"], 1]) # Weight of 1 for each restaurant
|
| 133 |
-
|
| 134 |
-
# Add heatmap layer
|
| 135 |
-
HeatMap(heat_data, radius=15, blur=10, max_zoom=1, name="餐廳數量熱力圖").add_to(m)
|
| 136 |
-
|
| 137 |
-
# Add layer control
|
| 138 |
-
folium.LayerControl().add_to(m)
|
| 139 |
|
| 140 |
# Display the map in Streamlit
|
| 141 |
st.components.v1.html(m._repr_html_(), height=600)
|
| 142 |
-
else:
|
| 143 |
-
st.error("無法顯示地圖,因為缺少緯度和經度資訊。")
|
| 144 |
-
|
| 145 |
-
# Save the DataFrame to CSV with UTF-8 encoding
|
| 146 |
-
csv_file = "restaurants_data.csv"
|
| 147 |
-
df.to_csv(csv_file, encoding="utf-8-sig", index=False)
|
| 148 |
-
|
| 149 |
-
# Display download button for the CSV
|
| 150 |
-
st.download_button(
|
| 151 |
-
label="下載餐廳數據 CSV 檔案",
|
| 152 |
-
data=open(csv_file, "rb").read(),
|
| 153 |
-
file_name=csv_file,
|
| 154 |
-
mime="text/csv"
|
| 155 |
-
)
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
from bs4 import BeautifulSoup
|
| 3 |
import pandas as pd
|
| 4 |
import folium
|
| 5 |
+
from folium.plugins import MarkerCluster
|
| 6 |
import plotly.graph_objects as go
|
| 7 |
+
import plotly.express as px # Add this import
|
| 8 |
from geopy.geocoders import Nominatim
|
|
|
|
| 9 |
import re
|
| 10 |
import streamlit as st
|
|
|
|
| 11 |
|
| 12 |
# Streamlit title and description
|
| 13 |
+
st.title("米其林餐廳指南爬蟲")
|
| 14 |
+
st.write("Extract restaurant data, visualize with a pie chart and bar chart, and display locations on a map.")
|
| 15 |
|
| 16 |
# Read data from Google Sheets
|
| 17 |
sheet_id = "1xUfnD1WCF5ldqECI8YXIko1gCpaDDCwTztL17kjI42U"
|
| 18 |
+
df1 = pd.read_csv(f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv")
|
| 19 |
|
| 20 |
+
# Convert "網址" column to a Python list
|
| 21 |
+
urls = df1["網址"].tolist()
|
| 22 |
+
|
| 23 |
+
# Create a DataFrame to store all restaurant data
|
| 24 |
+
df = pd.DataFrame(columns=["Store Name", "Address", "Phone", "Latitude", "Longitude", "Region"])
|
| 25 |
|
| 26 |
# Initialize Nominatim geocoder
|
| 27 |
+
geolocator = Nominatim(user_agent="my_app")
|
| 28 |
|
| 29 |
# Function to extract region (區域) from the address using regex
|
| 30 |
def extract_region(address):
|
|
|
|
| 34 |
else:
|
| 35 |
return "Unknown"
|
| 36 |
|
| 37 |
+
# Function to fetch and parse data
|
| 38 |
+
def fetch_data():
|
| 39 |
+
global df
|
| 40 |
+
# Progress bar in Streamlit
|
| 41 |
+
progress_bar = st.progress(0)
|
| 42 |
+
total_urls = len(urls)
|
| 43 |
+
|
| 44 |
+
# Iterate through each URL
|
| 45 |
+
for idx, url in enumerate(urls):
|
| 46 |
+
response = requests.get(url)
|
| 47 |
+
soup = BeautifulSoup(response.content, "html.parser")
|
| 48 |
+
|
| 49 |
+
try:
|
| 50 |
+
store_name = soup.find("h2", class_="restaurant-details__heading--title").text.strip()
|
| 51 |
+
except AttributeError:
|
| 52 |
+
store_name = None
|
| 53 |
+
|
| 54 |
+
try:
|
| 55 |
+
address = soup.find("li", class_="restaurant-details__heading--address").text.strip()
|
| 56 |
+
region = extract_region(address)
|
| 57 |
+
except AttributeError:
|
| 58 |
+
address = None
|
| 59 |
+
region = "Unknown"
|
| 60 |
+
|
| 61 |
+
# Try to extract phone number
|
| 62 |
+
try:
|
| 63 |
+
phone = soup.find("a", {"data-event": "CTA_tel"}).get("href").replace("tel:", "")
|
| 64 |
+
except AttributeError:
|
| 65 |
+
phone = None
|
| 66 |
+
|
| 67 |
+
try:
|
| 68 |
+
location = geolocator.geocode(address)
|
| 69 |
+
if location:
|
| 70 |
+
latitude = location.latitude
|
| 71 |
+
longitude = location.longitude
|
| 72 |
+
else:
|
| 73 |
+
latitude = None
|
| 74 |
+
longitude = None
|
| 75 |
+
except:
|
| 76 |
+
latitude = None
|
| 77 |
+
longitude = None
|
| 78 |
+
|
| 79 |
+
new_row = pd.DataFrame({
|
| 80 |
+
"Store Name": [store_name],
|
| 81 |
+
"Address": [address],
|
| 82 |
+
"Phone": [phone],
|
| 83 |
+
"Latitude": [latitude],
|
| 84 |
+
"Longitude": [longitude],
|
| 85 |
+
"Region": [region]
|
| 86 |
+
})
|
| 87 |
+
|
| 88 |
+
df = pd.concat([df, new_row], ignore_index=True)
|
| 89 |
+
|
| 90 |
+
# Update progress bar
|
| 91 |
+
progress_bar.progress((idx + 1) / total_urls)
|
| 92 |
+
|
| 93 |
+
# Button to trigger data fetching
|
| 94 |
+
if st.button("爬取餐廳資料"):
|
| 95 |
+
fetch_data()
|
| 96 |
+
|
| 97 |
+
# Save the DataFrame to CSV with UTF-8 encoding, including latitude and longitude
|
| 98 |
+
csv_file = "restaurants_data.csv"
|
| 99 |
+
df.to_csv(csv_file, encoding="utf-8-sig", index=False)
|
| 100 |
+
|
| 101 |
+
# Display the DataFrame as a table at the top
|
| 102 |
+
st.subheader("Restaurant Data")
|
| 103 |
+
st.dataframe(df)
|
| 104 |
+
|
| 105 |
+
# Display download button for the CSV
|
| 106 |
+
st.download_button(
|
| 107 |
+
label="Download restaurant data as CSV",
|
| 108 |
+
data=open(csv_file, "rb").read(),
|
| 109 |
+
file_name=csv_file,
|
| 110 |
+
mime="text/csv"
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Group the data by region and sum the number of restaurants
|
| 114 |
+
region_group = df.groupby("Region").size().reset_index(name='Count')
|
| 115 |
+
|
| 116 |
+
# Plot enlarged pie chart with custom colors and labels
|
| 117 |
+
pie_chart = go.Figure(go.Pie(
|
| 118 |
+
labels=region_group["Region"],
|
| 119 |
+
values=region_group["Count"],
|
| 120 |
+
textinfo="label+percent",
|
| 121 |
+
hoverinfo="label+value",
|
| 122 |
+
textfont=dict(size=18),
|
| 123 |
+
marker=dict(colors=px.colors.qualitative.Set3, line=dict(color='#000000', width=2))
|
| 124 |
))
|
| 125 |
|
| 126 |
+
pie_chart.update_layout(
|
| 127 |
+
title="Restaurant Distribution by Region",
|
| 128 |
title_x=0.5,
|
| 129 |
title_font=dict(size=24, family="Arial"),
|
| 130 |
height=600,
|
| 131 |
+
margin=dict(t=50, b=50, l=50, r=50)
|
| 132 |
)
|
| 133 |
+
st.subheader("Restaurant Distribution by Region (Enlarged Pie Chart)")
|
| 134 |
+
st.plotly_chart(pie_chart)
|
|
|
|
| 135 |
|
| 136 |
# Plot bar chart with custom colors and labels
|
| 137 |
bar_chart = go.Figure(go.Bar(
|
| 138 |
+
x=region_group["Region"],
|
| 139 |
y=region_group["Count"],
|
| 140 |
text=region_group["Count"],
|
| 141 |
textposition='auto',
|
|
|
|
| 143 |
))
|
| 144 |
|
| 145 |
bar_chart.update_layout(
|
| 146 |
+
title="Restaurant Count by Region",
|
| 147 |
title_x=0.5,
|
| 148 |
title_font=dict(size=24, family="Arial"),
|
| 149 |
height=400,
|
| 150 |
margin=dict(t=50, b=50, l=50, r=50),
|
| 151 |
+
xaxis_title="Region",
|
| 152 |
+
yaxis_title="Number of Restaurants",
|
| 153 |
xaxis=dict(tickangle=-45)
|
| 154 |
)
|
| 155 |
+
st.subheader("Restaurant Count by Region (Bar Chart)")
|
| 156 |
st.plotly_chart(bar_chart)
|
| 157 |
|
| 158 |
+
# Display a map using Folium
|
| 159 |
+
st.subheader("Restaurant Locations Map")
|
|
|
|
| 160 |
|
| 161 |
+
# Create map centered around Tainan
|
| 162 |
+
m = folium.Map(location=[23.0, 120.2], zoom_start=12)
|
|
|
|
|
|
|
| 163 |
|
| 164 |
# Add marker cluster to the map
|
| 165 |
marker_cluster = MarkerCluster().add_to(m)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
for index, row in df.iterrows():
|
| 167 |
+
if pd.notnull(row["Latitude"]) and pd.notnull(row["Longitude"]):
|
| 168 |
folium.Marker(
|
| 169 |
+
location=[row["Latitude"], row["Longitude"]],
|
| 170 |
+
popup=f"{row['Store Name']} ({row['Phone']})",
|
| 171 |
+
tooltip=row["Address"]
|
| 172 |
).add_to(marker_cluster)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
# Display the map in Streamlit
|
| 175 |
st.components.v1.html(m._repr_html_(), height=600)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|